Wong Hooi Guan, M. A. Ahamed Khan, M. Ramasamy, C. Ang, Lim Wei Hong, Kalaiselvi, C. Deisy, Shanmugam Sridevi, M. Suresh
{"title":"Surface Electromyography (SEMG) Based Robotic Assistive Device","authors":"Wong Hooi Guan, M. A. Ahamed Khan, M. Ramasamy, C. Ang, Lim Wei Hong, Kalaiselvi, C. Deisy, Shanmugam Sridevi, M. Suresh","doi":"10.1109/ROMA55875.2022.9915657","DOIUrl":null,"url":null,"abstract":"An EMG-based exoskeleton robot system that assist the rehabilitation process of upper limb has been proposed in this project. The exoskeleton has four degree of freedom (DOF) capable of various motion such as shoulder flexion/extension, abduction/adduction and internal/external rotation, and elbow flexion/extension. This project report describes the hardware design of the exoskeleton robot and the control method after analysing the work of other researchers. The skin surface electromyography (SEMG) signals of muscles and the joint force/torque of the user are used as the input information for the proposed controller. The robot’s motion can be controlled by both the SEMG signals and force/torque signals. Support vector machine (SVM) has been implemented to estimate user’s intended motion based on the SEMG signals. The proposed control system has only been tested in computer simulation. Thus, further testing and analysis are required before the robot prototype can be built.","PeriodicalId":121458,"journal":{"name":"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMA55875.2022.9915657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An EMG-based exoskeleton robot system that assist the rehabilitation process of upper limb has been proposed in this project. The exoskeleton has four degree of freedom (DOF) capable of various motion such as shoulder flexion/extension, abduction/adduction and internal/external rotation, and elbow flexion/extension. This project report describes the hardware design of the exoskeleton robot and the control method after analysing the work of other researchers. The skin surface electromyography (SEMG) signals of muscles and the joint force/torque of the user are used as the input information for the proposed controller. The robot’s motion can be controlled by both the SEMG signals and force/torque signals. Support vector machine (SVM) has been implemented to estimate user’s intended motion based on the SEMG signals. The proposed control system has only been tested in computer simulation. Thus, further testing and analysis are required before the robot prototype can be built.