Globally Exponential Stability of Uncertain Memristor-based Recurrent Neural Networks with Unbounded Time-varying Delays

Yingying Dong, Jianmin Wang
{"title":"Globally Exponential Stability of Uncertain Memristor-based Recurrent Neural Networks with Unbounded Time-varying Delays","authors":"Yingying Dong, Jianmin Wang","doi":"10.1109/icaci55529.2022.9837571","DOIUrl":null,"url":null,"abstract":"This paper studies the globally exponential stability of the equilibrium point for uncertain memristor-based recurrent neural networks (MRNN) with unbounded time-varying delay. The MRNN in this paper is the extension of classical MRNN since the uncertain factors and unbounded time-varying delay are considered. Under some assumptions for the MRNN, the equilibrium point of MRNN is proved to be globally exponentially stable by the Lyapunov method. A numerical experiment is performed to show the proposed result.","PeriodicalId":412347,"journal":{"name":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaci55529.2022.9837571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the globally exponential stability of the equilibrium point for uncertain memristor-based recurrent neural networks (MRNN) with unbounded time-varying delay. The MRNN in this paper is the extension of classical MRNN since the uncertain factors and unbounded time-varying delay are considered. Under some assumptions for the MRNN, the equilibrium point of MRNN is proved to be globally exponentially stable by the Lyapunov method. A numerical experiment is performed to show the proposed result.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有无界时变时滞的不确定忆阻器递归神经网络的全局指数稳定性
研究了具有无界时变时滞的不确定忆阻器递归神经网络平衡点的全局指数稳定性。由于考虑了不确定因素和无界时变时滞,本文的MRNN是经典MRNN的扩展。在一定的假设条件下,利用Lyapunov方法证明了MRNN的平衡点是全局指数稳定的。数值实验验证了所提结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speed Estimation of Video Target Based on Siamese Convolutional Network and Kalman Filtering Aspect Term Extraction and Categorization for Chinese MOOC Reviews A Global Harmony Search Algorithm Based on Tent Chaos Map and Elite Reverse Learning An Improved Superpixel-based Fuzzy C-Means Method for Complex Picture Segmentation Tasks New Results on Finite-Time Synchronization of Delayed Fuzzy Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1