{"title":"Residue number systems: a key to parallelism in public key cryptography","authors":"K. C. Posch, R. Posch","doi":"10.1109/SPDP.1992.242713","DOIUrl":null,"url":null,"abstract":"Public key cryptography and parallel algorithms are considered. Special attention is paid to algorithms using long integer modulo arithmetic. A modification of the commonly known RSA algorithm is taken as a candidate. So far all implementations have been more or less sequential in the sense that no partitions of a long integer among various processing elements have been performed. The proposed approach allows the use of a dedicated processor for each group of about 30 to 50 bits of a long integer. Efficiency is primarily gained when special-purpose processors are used. In this regard this work is the basis of a VLSI approach to a multiprocessor-based cryptographic design with 15 to 100 processors involved.<<ETX>>","PeriodicalId":265469,"journal":{"name":"[1992] Proceedings of the Fourth IEEE Symposium on Parallel and Distributed Processing","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the Fourth IEEE Symposium on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPDP.1992.242713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Public key cryptography and parallel algorithms are considered. Special attention is paid to algorithms using long integer modulo arithmetic. A modification of the commonly known RSA algorithm is taken as a candidate. So far all implementations have been more or less sequential in the sense that no partitions of a long integer among various processing elements have been performed. The proposed approach allows the use of a dedicated processor for each group of about 30 to 50 bits of a long integer. Efficiency is primarily gained when special-purpose processors are used. In this regard this work is the basis of a VLSI approach to a multiprocessor-based cryptographic design with 15 to 100 processors involved.<>