Parallel Readout of Optical Disks

D. Psaltis
{"title":"Parallel Readout of Optical Disks","authors":"D. Psaltis","doi":"10.21236/ada256625","DOIUrl":null,"url":null,"abstract":"Optical memory disks have been developed in recent years as mass storage media for audio, video, and computer memory applications. Write-once systems are already widely used, and reprogrammable systems are now starting to become commercially available as well. In all the existing systems the information stored in the optical disk is recorded and readout serially by focusing a laser beam on a single pixel. With an optical memory however it is possible to illuminate the disk with an extended beam and readout (as well as record in principle) large amounts of data in parallel [1]. This distinction between serial and Parallel Readout Optical Disks (PROD) is schematically shown in Fig.1. If the potential of PRODs is realized in practice it can eliminate the bottleneck that currently exists between mass memory and the information processing portion of a computer and thus greatly impact the speed with which computers can execute memory intensive problems. There are three main issues that we will address in this paper: The suitability of commercially available disks for this applications including the experimental characterization of a prototype magnetooptic system from SONY, the limitations imposed on parallel access due to the optical system, and the types of problems and computer architectures that can make effective use of the PROD capability.","PeriodicalId":302010,"journal":{"name":"Optical Computing","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21236/ada256625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Optical memory disks have been developed in recent years as mass storage media for audio, video, and computer memory applications. Write-once systems are already widely used, and reprogrammable systems are now starting to become commercially available as well. In all the existing systems the information stored in the optical disk is recorded and readout serially by focusing a laser beam on a single pixel. With an optical memory however it is possible to illuminate the disk with an extended beam and readout (as well as record in principle) large amounts of data in parallel [1]. This distinction between serial and Parallel Readout Optical Disks (PROD) is schematically shown in Fig.1. If the potential of PRODs is realized in practice it can eliminate the bottleneck that currently exists between mass memory and the information processing portion of a computer and thus greatly impact the speed with which computers can execute memory intensive problems. There are three main issues that we will address in this paper: The suitability of commercially available disks for this applications including the experimental characterization of a prototype magnetooptic system from SONY, the limitations imposed on parallel access due to the optical system, and the types of problems and computer architectures that can make effective use of the PROD capability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光盘并行读出
近年来,作为音频、视频和计算机存储应用的大容量存储介质,光存储器得到了发展。一次写入系统已经被广泛使用,可重新编程的系统现在也开始商业化。在所有现有的系统中,存储在光盘中的信息都是通过将激光束聚焦在单个像素上串行地记录和读出的。然而,有了光学存储器,就有可能用扩展光束照亮磁盘,并并行地读出(以及原则上记录)大量数据。串行和并行读出光盘(PROD)之间的区别示意图如图1所示。如果prod的潜力在实践中得到实现,它可以消除目前存在于大容量存储器和计算机信息处理部分之间的瓶颈,从而极大地影响计算机执行内存密集型问题的速度。我们将在本文中解决三个主要问题:商用磁盘对这种应用的适用性,包括索尼原型磁光系统的实验表征,由于光学系统而对并行访问施加的限制,以及可以有效利用PROD功能的问题类型和计算机体系结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical Interconnections Parallel Computing Optical Circuits Volume Holographic Storage and Retrieval of Digital Information Adaptive Beam-Steering and Jammer-Nulling Photorefractive Phased-Array Radar Processor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1