LMI Approach for Stochastic Stability of Markovian Jumping Hopfield Neural Networks with Wiener Process

X. Lou, B. Cui
{"title":"LMI Approach for Stochastic Stability of Markovian Jumping Hopfield Neural Networks with Wiener Process","authors":"X. Lou, B. Cui","doi":"10.1109/ISDA.2006.187","DOIUrl":null,"url":null,"abstract":"This paper deals with the stochastic stability problem for Markovian jumping Hopfield neural networks (MJHNNs) with time-varying delays and Wiener process. Our attention is focused on developing sufficient conditions on stochastic stability, even if the system contains Wiener process. All the obtained results are presented in terms of linear matrix inequality. The efficiency of the proposed results is demonstrated via two numerical examples","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with the stochastic stability problem for Markovian jumping Hopfield neural networks (MJHNNs) with time-varying delays and Wiener process. Our attention is focused on developing sufficient conditions on stochastic stability, even if the system contains Wiener process. All the obtained results are presented in terms of linear matrix inequality. The efficiency of the proposed results is demonstrated via two numerical examples
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有Wiener过程的马尔可夫跳跃Hopfield神经网络随机稳定性的LMI方法
研究了具有时变时滞和Wiener过程的马尔可夫跳Hopfield神经网络的随机稳定性问题。我们的注意力集中在建立随机稳定性的充分条件,即使系统包含维纳过程。所得结果均以线性矩阵不等式的形式表示。通过两个算例验证了所提方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Lagrange Nonlinear Programming Neural Networks for Inequality Constraints Enhancement Filter for Computer-Aided Detection of Pulmonary Nodules on Thoracic CT images A View-Based Toeplitz-Matrix-Supported System for Word Recognition without Segmentation A Novel Spatial Clustering with Obstacles Constraints Based on Genetic Algorithms and K-Medoids An Intelligent Runoff Forecasting Method Based on Fuzzy sets, Neural network and Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1