Attribute classification using feature analysis

Felix Naumann, C. T. H. Ho, Xuqing Tian, L. Haas, N. Megiddo
{"title":"Attribute classification using feature analysis","authors":"Felix Naumann, C. T. H. Ho, Xuqing Tian, L. Haas, N. Megiddo","doi":"10.1109/ICDE.2002.994725","DOIUrl":null,"url":null,"abstract":"The basis of many systems that integrate data from multiple sources is a set of correspondences between source schemata and a target schema. Correspondences express a relationship between sets of source attributes, possibly from multiple sources, and a set of target attributes. Clio is an integration tool that assists users in defining value correspondences between attributes. In real life scenarios there may be many sources and the source relations may have many attributes. Users can get lost and might miss or be unable to find some correspondences. Also, in many real life schemata the attribute names reveal little or nothing about the semantics of the data values. Only the data values in the attribute columns can convey the semantic meaning of the attribute. Our work relieves users of the problems of too many attributes and meaningless attribute names, by automatically suggesting correspondences between source and target attributes. For each attribute, we analyze the data values and derive a set of features.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"278 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

The basis of many systems that integrate data from multiple sources is a set of correspondences between source schemata and a target schema. Correspondences express a relationship between sets of source attributes, possibly from multiple sources, and a set of target attributes. Clio is an integration tool that assists users in defining value correspondences between attributes. In real life scenarios there may be many sources and the source relations may have many attributes. Users can get lost and might miss or be unable to find some correspondences. Also, in many real life schemata the attribute names reveal little or nothing about the semantics of the data values. Only the data values in the attribute columns can convey the semantic meaning of the attribute. Our work relieves users of the problems of too many attributes and meaningless attribute names, by automatically suggesting correspondences between source and target attributes. For each attribute, we analyze the data values and derive a set of features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用特征分析进行属性分类
许多集成来自多个数据源的数据的系统的基础是源模式和目标模式之间的一组对应关系。对应表示一组源属性(可能来自多个源)和一组目标属性之间的关系。Clio是一个集成工具,它帮助用户定义属性之间的值对应关系。在实际场景中,可能有许多源,并且源关系可能具有许多属性。用户可能会迷路,可能会错过或无法找到一些通信。此外,在许多实际模式中,属性名很少或根本没有透露数据值的语义。只有属性列中的数据值才能传达属性的语义。我们的工作通过自动提示源属性和目标属性之间的对应关系,减轻了用户属性过多和属性名称无意义的问题。对于每个属性,我们分析数据值并派生出一组特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Out from under the trees [linear file template] Declarative composition and peer-to-peer provisioning of dynamic Web services Multivariate time series prediction via temporal classification Integrating workflow management systems with business-to-business interaction standards YFilter: efficient and scalable filtering of XML documents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1