Mobility Mode Detection Using WiFi Signals

Arash Kalatian, B. Farooq
{"title":"Mobility Mode Detection Using WiFi Signals","authors":"Arash Kalatian, B. Farooq","doi":"10.1109/ISC2.2018.8656903","DOIUrl":null,"url":null,"abstract":"We utilize Wi-Fi communications from smartphones to predict their mobility mode, i.e. walking, biking and driving. Wi-Fi sensors were deployed at four strategic locations in a closed loop on streets in downtown Toronto. Deep neural network (Multilayer Perceptron) along with three decision tree-based classifiers (Decision Tree, Bagged Decision Tree and Random Forest) are developed. Results show that the best prediction accuracy is achieved by Multilayer Perceptron, with 86.52% correct predictions of mobility modes.","PeriodicalId":344652,"journal":{"name":"2018 IEEE International Smart Cities Conference (ISC2)","volume":"53 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC2.2018.8656903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We utilize Wi-Fi communications from smartphones to predict their mobility mode, i.e. walking, biking and driving. Wi-Fi sensors were deployed at four strategic locations in a closed loop on streets in downtown Toronto. Deep neural network (Multilayer Perceptron) along with three decision tree-based classifiers (Decision Tree, Bagged Decision Tree and Random Forest) are developed. Results show that the best prediction accuracy is achieved by Multilayer Perceptron, with 86.52% correct predictions of mobility modes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用WiFi信号检测移动模式
我们利用智能手机的Wi-Fi通信来预测他们的移动模式,即步行、骑自行车和开车。Wi-Fi传感器被部署在多伦多市中心街道上的四个战略位置,形成一个闭环。深度神经网络(多层感知器)与三种基于决策树的分类器(决策树,袋装决策树和随机森林)的发展。结果表明,多层感知器的预测精度最高,对迁移模式的预测准确率为86.52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Machine Learning Approach to Short-Term Traffic Flow Prediction: A Case Study of Interstate 64 in Missouri Feature selection embedded subspace clustering with low-rank and locality constraints Optimal User Association in Hybrid WLANs under Bandwidth Constraints Evolution of autograph signature to advanced electronic signature in smart cities environment A Unique Approach to Demand Side Management of Electric Vehicle Charging for Developing Countries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1