Recursive identification of a turbo-generator plant using structurally adaptive neural networks

T. F. Junge, H. Unbehauen
{"title":"Recursive identification of a turbo-generator plant using structurally adaptive neural networks","authors":"T. F. Junge, H. Unbehauen","doi":"10.1109/ICIT.2000.854230","DOIUrl":null,"url":null,"abstract":"This paper presents an enhanced version of the \"online adaptive k-tree lattice learning\" (ONALAL) algorithm to train \"rectangular local linear model\" (RLLM) networks. It is especially designed for online identification of nonlinear dynamical systems using the NARX structure. Basically, the algorithm performs a recursive adaptation of the complete structure and all parameters of the network. Thus, the significant inputs of the network (regressors of the NARX structure) as well as the number of local linear models are automatically determined. Furthermore, the parameters of each local linear model are optimized using a recursive optimization method (RLS algorithm). This leads to parsimonious models of SISO or MIMO dynamical systems, a primordial aim when solving nonlinear system identification problems. The effectiveness and the performance of the new approach is demonstrated by the real-time identification of a highly nonlinear plant-a turbogenerator.","PeriodicalId":405648,"journal":{"name":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2000.854230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an enhanced version of the "online adaptive k-tree lattice learning" (ONALAL) algorithm to train "rectangular local linear model" (RLLM) networks. It is especially designed for online identification of nonlinear dynamical systems using the NARX structure. Basically, the algorithm performs a recursive adaptation of the complete structure and all parameters of the network. Thus, the significant inputs of the network (regressors of the NARX structure) as well as the number of local linear models are automatically determined. Furthermore, the parameters of each local linear model are optimized using a recursive optimization method (RLS algorithm). This leads to parsimonious models of SISO or MIMO dynamical systems, a primordial aim when solving nonlinear system identification problems. The effectiveness and the performance of the new approach is demonstrated by the real-time identification of a highly nonlinear plant-a turbogenerator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于结构自适应神经网络的汽轮发电机组递归辨识
本文提出了一种增强版的“在线自适应k树格学习”(ONALAL)算法,用于训练“矩形局部线性模型”(RLLM)网络。它是专门为非线性动力系统的在线辨识而设计的。基本上,该算法对网络的整个结构和所有参数进行递归自适应。因此,网络的重要输入(NARX结构的回归量)以及局部线性模型的数量是自动确定的。在此基础上,采用递归优化方法(RLS算法)对各局部线性模型的参数进行优化。这导致了SISO或MIMO动力系统的简约模型,这是解决非线性系统识别问题的基本目标。通过对高度非线性的汽轮发电机组进行实时辨识,验证了该方法的有效性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of nonlinear nonautonomous state space systems from input-output measurements On stabilizing gains far digital control systems Developing an experimental mobile robot-ROVEL Failure detection/management in launch vehicle avionics Static UPS failures-origin and possible prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1