MESIN PENTERJEMAH BAHASA INDONESIA-BAHASA SUNDA MENGGUNAKAN RECURRENT NEURAL NETWORKS

Yustiana Fauziyah, Ridwan Ilyas, Fatan Kasyidi
{"title":"MESIN PENTERJEMAH BAHASA INDONESIA-BAHASA SUNDA MENGGUNAKAN RECURRENT NEURAL NETWORKS","authors":"Yustiana Fauziyah, Ridwan Ilyas, Fatan Kasyidi","doi":"10.33365/jti.v16i2.1930","DOIUrl":null,"url":null,"abstract":"Translator is a process where one language is changed into another language. Translator in the last research was carried out using a Phrase-based Statistical Machine Translation (PSMT) approach. This research builds an Indonesian to Sundanese translator. The stages used start from pre-processing using text preprocessing and word embedding Word2Vec and the approach used is Neural Machine Translation (NMT) with Encoder-Decoder architecture in which there is a Recurrent Neural Network (RNN). Tests in the study resulted in the optimal value by the GRU of 99.17%. Models using Attention got 99.94%. The use of optimization model got optimal results by Adam 99.35% and BLEU Score results with optimal bleu 92.63% and brievity penalty 0.929. The results of the machine translator produce training predictions from Indonesian to Sundanese if the input sentences are in accordance with the corpus and the translation results are not suitable when the input sentences are different from the corpus.","PeriodicalId":344455,"journal":{"name":"Jurnal Teknoinfo","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknoinfo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33365/jti.v16i2.1930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Translator is a process where one language is changed into another language. Translator in the last research was carried out using a Phrase-based Statistical Machine Translation (PSMT) approach. This research builds an Indonesian to Sundanese translator. The stages used start from pre-processing using text preprocessing and word embedding Word2Vec and the approach used is Neural Machine Translation (NMT) with Encoder-Decoder architecture in which there is a Recurrent Neural Network (RNN). Tests in the study resulted in the optimal value by the GRU of 99.17%. Models using Attention got 99.94%. The use of optimization model got optimal results by Adam 99.35% and BLEU Score results with optimal bleu 92.63% and brievity penalty 0.929. The results of the machine translator produce training predictions from Indonesian to Sundanese if the input sentences are in accordance with the corpus and the translation results are not suitable when the input sentences are different from the corpus.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
翻译是将一种语言转换成另一种语言的过程。在最后的研究中,译者采用基于短语的统计机器翻译(PSMT)方法。本研究构建了印尼语到巽他语的翻译系统。使用的阶段从使用文本预处理和单词嵌入Word2Vec的预处理开始,使用的方法是带有编码器-解码器架构的神经机器翻译(NMT),其中有一个循环神经网络(RNN)。本研究通过试验得出GRU为99.17%的最优值。使用Attention的模型得到99.94%。采用优化模型得到最优结果Adam为99.35%,BLEU Score为92.63%,brief penalty为0.929。当输入的句子与语料库一致时,机器翻译的结果产生从印尼语到巽他语的训练预测,而当输入的句子与语料库不一致时,翻译结果不合适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DEVELOPMENT OF INFORMATION SYSTEMS FOR SERVICE AND CUSTOMER COMPLAINTS USING THE EXTREME PROGRAMMING METHOD METODE PROFILE MATCHING UNTUK PENENTUAN AMBALAN TERGIAT PADA GERAKAN PRAMUKA KECAMATAN JATISAMPURNA BEKASI IDENTIFIKASI BIOMETRIKA MENGGUNAKAN EKSTRAKSI MINUTIAE PADA CITRA SIDIK JARI SYSTEMATIC REVIEW: PERKEMBANGAN MACHINE LEARNING PADA SPERMA MANUSIA VISUALISASI REKOMENDASI PEMILIHAN JURNAL BIDANG INFORMATIKA DENGAN MENGGUNAKAN R DAN SHINY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1