Maximum likelihood estimation in the generalized extreme value regression model for binary data

Lo Fatimata, Demba Ba, Diop Aba
{"title":"Maximum likelihood estimation in the generalized extreme value regression model for binary data","authors":"Lo Fatimata, Demba Ba, Diop Aba","doi":"10.56947/gjom.v12i2.733","DOIUrl":null,"url":null,"abstract":"Generalized extreme value regression model is widely used when the dependent variable Y represents a rare event. The quantile function of the GEV distribution is used as link function to investigate the relationship between the binary outcome Y and a set of potential predictors X. In this article we develop a maximum likelihood estimation procedure int he generalized extreme value regression model. We establish the asymptotic properties (existence, consistency and asymptotic normality) of the proposed maximum likelihood estimator.","PeriodicalId":421614,"journal":{"name":"Gulf Journal of Mathematics","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gulf Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/gjom.v12i2.733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Generalized extreme value regression model is widely used when the dependent variable Y represents a rare event. The quantile function of the GEV distribution is used as link function to investigate the relationship between the binary outcome Y and a set of potential predictors X. In this article we develop a maximum likelihood estimation procedure int he generalized extreme value regression model. We establish the asymptotic properties (existence, consistency and asymptotic normality) of the proposed maximum likelihood estimator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二值数据广义极值回归模型中的极大似然估计
广义极值回归模型在因变量Y代表罕见事件时被广泛使用。利用GEV分布的分位数函数作为链接函数,研究了二元结果Y与一组潜在预测因子x之间的关系。本文提出了广义极值回归模型的极大似然估计方法。我们建立了所提出的极大似然估计的渐近性质(存在性、相合性和渐近正态性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Existence of weak solutions for a class of (p(u),q(u))-Laplacian problems Local derivations and Rota-Baxter operators of quantum Lotka-Volterra algebras on M_2(C) The power serieswise Armendariz graph of a commutative ring Lattice of c-structures Existence and multiplicity results for Kirchhoff-type superlinear problems involving the fractional p(x)-Laplacian satisfying (C)-condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1