Bayesian Regularization Based ANN for the Design of Flexible Antenna for UWB Wireless Applications

A. Hammoodi, Fadwa Al-Azzo, M. Milanova, H. Khaleel
{"title":"Bayesian Regularization Based ANN for the Design of Flexible Antenna for UWB Wireless Applications","authors":"A. Hammoodi, Fadwa Al-Azzo, M. Milanova, H. Khaleel","doi":"10.1109/MIPR.2018.00039","DOIUrl":null,"url":null,"abstract":"This paper presents a flexible pentagonal shape Ultra-Wide Band (UWB) antenna design using Artificial Neural Network (ANN) for WLAN, 5G, and WiMAX applications. The pentagonal patch is placed on top of flexible polyimide substrate and simulated using the well-known 3-D electromagnetic (EM) simulator HFSS, v.18.1. Due to large computing cluster required by the EM simulator to solve the design under consideration in addition to the time consumed, ANN is used to synthesize the design and reduce the cost and time consumed to analyze the aforementioned structure. Neural Network with 1 hidden layer of 10 neurons based on Bayesian Regularization algorithm is presented. An error of less 5% is produced during the learning, validation, and testing processes. Neural network is a good candidate to represent the pentagonal shape antenna used for UWB applications.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"37 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a flexible pentagonal shape Ultra-Wide Band (UWB) antenna design using Artificial Neural Network (ANN) for WLAN, 5G, and WiMAX applications. The pentagonal patch is placed on top of flexible polyimide substrate and simulated using the well-known 3-D electromagnetic (EM) simulator HFSS, v.18.1. Due to large computing cluster required by the EM simulator to solve the design under consideration in addition to the time consumed, ANN is used to synthesize the design and reduce the cost and time consumed to analyze the aforementioned structure. Neural Network with 1 hidden layer of 10 neurons based on Bayesian Regularization algorithm is presented. An error of less 5% is produced during the learning, validation, and testing processes. Neural network is a good candidate to represent the pentagonal shape antenna used for UWB applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯正则化的超宽带无线柔性天线设计
本文提出了一种灵活的五边形超宽带(UWB)天线设计,该天线采用人工神经网络(ANN),适用于WLAN、5G和WiMAX应用。五角形贴片放置在柔性聚酰亚胺衬底上,并使用著名的3-D电磁(EM)模拟器HFSS, v.18.1进行模拟。由于仿真器求解所考虑的设计需要庞大的计算集群,且耗时较长,因此采用人工神经网络对设计进行综合,减少了分析上述结构的成本和时间。提出了一种基于贝叶斯正则化算法的含有10个神经元的1隐层神经网络。在学习、验证和测试过程中产生的误差小于5%。神经网络是表示超宽带应用中五边形天线的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications A Multimodal Approach to Predict Social Media Popularity Ownership Identification and Signaling of Multimedia Content Components Deep Learning of Path-Based Tree Classifiers for Large-Scale Plant Species Identification Understanding User Profiles on Social Media for Fake News Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1