{"title":"Matrix formulations of minimum absorbed energy principle and nodal method of magnetic circuits analysis","authors":"H. Andrei, P. Andrei, G. Măntescu","doi":"10.1109/OPTIM.2014.6850881","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to extend the previous contributions of the authors regarding the minimum dissipated power for electric circuits to linear magnetic circuits. Based on the analogies between electric and magnetic circuits, the variational formulation for determining the minimum absorbed energy (MAE) for linear magnetic circuits is proven. In such conditions MAE is defined as a general principle for linear magnetic circuits in stationary and quasi-stationary regime. By using the matrix formulation of MAE the nodal method for magnetic circuit in terms of magnetic potentials is obtained. The results presented in the sequel refer to a classical linear magnetic circuit and prove the originality of the main novel concepts.","PeriodicalId":298237,"journal":{"name":"2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OPTIM.2014.6850881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The aim of this paper is to extend the previous contributions of the authors regarding the minimum dissipated power for electric circuits to linear magnetic circuits. Based on the analogies between electric and magnetic circuits, the variational formulation for determining the minimum absorbed energy (MAE) for linear magnetic circuits is proven. In such conditions MAE is defined as a general principle for linear magnetic circuits in stationary and quasi-stationary regime. By using the matrix formulation of MAE the nodal method for magnetic circuit in terms of magnetic potentials is obtained. The results presented in the sequel refer to a classical linear magnetic circuit and prove the originality of the main novel concepts.