Yingrui Yang, Shanxiu He, Yifan Qiao, Wentai Xie, Tao Yang
{"title":"Balanced Knowledge Distillation with Contrastive Learning for Document Re-ranking","authors":"Yingrui Yang, Shanxiu He, Yifan Qiao, Wentai Xie, Tao Yang","doi":"10.1145/3578337.3605120","DOIUrl":null,"url":null,"abstract":"Knowledge distillation is commonly used in training a neural document ranking model by employing a teacher to guide model refinement. As a teacher may not be correct in all cases, over-calibration between the student and teacher models can make training less effective. This paper focuses on the KL divergence loss used for knowledge distillation in document re-ranking, and re-visits balancing of knowledge distillation with explicit contrastive learning. The proposed loss function takes a conservative approach in imitating teacher's behavior, and allows student to deviate from a teacher's model sometimes through training. This paper presents analytic results with an evaluation on MS MARCO passages to validate the usefulness of the proposed loss for the transformer-based ColBERT re-ranking.","PeriodicalId":415621,"journal":{"name":"Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3578337.3605120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge distillation is commonly used in training a neural document ranking model by employing a teacher to guide model refinement. As a teacher may not be correct in all cases, over-calibration between the student and teacher models can make training less effective. This paper focuses on the KL divergence loss used for knowledge distillation in document re-ranking, and re-visits balancing of knowledge distillation with explicit contrastive learning. The proposed loss function takes a conservative approach in imitating teacher's behavior, and allows student to deviate from a teacher's model sometimes through training. This paper presents analytic results with an evaluation on MS MARCO passages to validate the usefulness of the proposed loss for the transformer-based ColBERT re-ranking.