An Efficient Approach for Clustering Uncertain Data Mining Based on Hash Indexing and Voronoi Clustering

Samir N. Ajani, M. Wanjari
{"title":"An Efficient Approach for Clustering Uncertain Data Mining Based on Hash Indexing and Voronoi Clustering","authors":"Samir N. Ajani, M. Wanjari","doi":"10.1109/CICN.2013.106","DOIUrl":null,"url":null,"abstract":"Recently the classifying uncertain data in spatial database used in data mining attract a main attention by researchers. The main task is to handle the uncertainty of the data in order to classify or cluster it. In order to classify or cluster the valid or certain data, there are various techniques like DTL, Rule based Classification, Naive Bayes Classification and many more techniques. It's easy to classify the certain data but classification of the uncertain data is bit difficult. Generally K-means algorithm is used to make clusters of uncertain of uncertain data but it increases overhead and computation time. Hence to improve the performance of K-means algorithm we are proposing a technique in which K-means is combined with Voronoi clustering but this will increase the prune overhead so to reduce this prune overhead we will add Hash indexing on th uncertain data object. Our technique of combining K-means with hash indexing and Vornoi diagram results better than older technique used for clustering based on K-Means algorithm.","PeriodicalId":415274,"journal":{"name":"2013 5th International Conference on Computational Intelligence and Communication Networks","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Computational Intelligence and Communication Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2013.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Recently the classifying uncertain data in spatial database used in data mining attract a main attention by researchers. The main task is to handle the uncertainty of the data in order to classify or cluster it. In order to classify or cluster the valid or certain data, there are various techniques like DTL, Rule based Classification, Naive Bayes Classification and many more techniques. It's easy to classify the certain data but classification of the uncertain data is bit difficult. Generally K-means algorithm is used to make clusters of uncertain of uncertain data but it increases overhead and computation time. Hence to improve the performance of K-means algorithm we are proposing a technique in which K-means is combined with Voronoi clustering but this will increase the prune overhead so to reduce this prune overhead we will add Hash indexing on th uncertain data object. Our technique of combining K-means with hash indexing and Vornoi diagram results better than older technique used for clustering based on K-Means algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于哈希索引和Voronoi聚类的不确定数据聚类有效方法
近年来,在数据挖掘中应用空间数据库对不确定数据进行分类成为研究人员关注的热点。主要任务是处理数据的不确定性,以便对其进行分类或聚类。为了对有效或特定的数据进行分类或聚类,有各种各样的技术,如DTL、基于规则的分类、朴素贝叶斯分类等等。对确定的数据进行分类比较容易,但对不确定的数据进行分类比较困难。一般采用K-means算法对不确定数据进行不确定聚类,但它增加了开销和计算时间。因此,为了提高K-means算法的性能,我们提出了一种将K-means与Voronoi聚类相结合的技术,但这将增加剪枝开销,因此为了减少这种剪枝开销,我们将在不确定的数据对象上添加哈希索引。我们将K-means与散列索引和Vornoi图相结合的技术比基于K-means算法的旧聚类技术效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Model of Legacy Software Reuse Based on Code Clone Detection QoS in Interconnection of Next Generation Networks Post Silicon Debugging Approach for USB2.0: Case Study of Enumeration Based on Fiber-Optic Sensor and the Light Intensity Changes Vehicle Dynamic Weighing System Comparison of AOMDV Routing Protocol under IEEE802.11 and TDMA Mac Layer Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1