I. Nakajima, T. Kitano, Kaoru Nakada, J. Hata, Masuhisa Ta
{"title":"Development of subcutaneous implantation coil for birds","authors":"I. Nakajima, T. Kitano, Kaoru Nakada, J. Hata, Masuhisa Ta","doi":"10.1109/HealthCom.2014.7001849","DOIUrl":null,"url":null,"abstract":"We have developed an electromagnetic generator to bury in subcutaneous area or abdominal cavity of the birds. As we can't use a solar battery, it is extremely difficult to supply a power for subcutaneous implantation such as biosensors under the skin due to the darkness environment. We are aiming to test the antigen-antibody reaction to confirm an avian influenza[1-2]. One solution is a very small generator with the electromagnetic induction coil. We attached the developed coil to chickens and pheasants and recorded the electric potential generated as the chicken walked and the pheasant flew. The electric potential generated by walking or flapping is equal to or exceeds the 10 V peak-to-peak at maximum. Even if we account for the junction voltage of the diode (300 mV), efficient charging of the double-layer capacitor is possible with the voltage doubler rectifier. If we increase the voltage, other problems arise, including the highvoltage insulation of the double-layer capacitor. For this reason, we believe the power generated to be sufficient.","PeriodicalId":269964,"journal":{"name":"2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2014.7001849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We have developed an electromagnetic generator to bury in subcutaneous area or abdominal cavity of the birds. As we can't use a solar battery, it is extremely difficult to supply a power for subcutaneous implantation such as biosensors under the skin due to the darkness environment. We are aiming to test the antigen-antibody reaction to confirm an avian influenza[1-2]. One solution is a very small generator with the electromagnetic induction coil. We attached the developed coil to chickens and pheasants and recorded the electric potential generated as the chicken walked and the pheasant flew. The electric potential generated by walking or flapping is equal to or exceeds the 10 V peak-to-peak at maximum. Even if we account for the junction voltage of the diode (300 mV), efficient charging of the double-layer capacitor is possible with the voltage doubler rectifier. If we increase the voltage, other problems arise, including the highvoltage insulation of the double-layer capacitor. For this reason, we believe the power generated to be sufficient.