Direct Laser Writing of Supercapacitors

L. Thekkekara
{"title":"Direct Laser Writing of Supercapacitors","authors":"L. Thekkekara","doi":"10.5772/INTECHOPEN.73000","DOIUrl":null,"url":null,"abstract":"Direct laser writing is a single-step fabrication technique for the micro and nanostructures even below the sub-diffraction limits. In recent times, the technique is adapted to the fabrication of on-chip energy storages with additional features of flexibility and stretchability. The major category of the energy storages taken into consideration for laser writing belongs to the family of supercapacitors which is known for the high rate of charge transfer, longer life spans and lesser charging times in comparison with traditional batteries. The technology explores the possibilities of non-explosive all solid-state energy storage integration with portable and wearable applications. These features can enable the development of self-powered autonomous devices, vehicles and self-reliant infrastructures. In this chapter, we discuss the progress, challenges and perspectives of micro-supercapacitors fabricated using direct laser writing.","PeriodicalId":369044,"journal":{"name":"Supercapacitors - Theoretical and Practical Solutions","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercapacitors - Theoretical and Practical Solutions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.73000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Direct laser writing is a single-step fabrication technique for the micro and nanostructures even below the sub-diffraction limits. In recent times, the technique is adapted to the fabrication of on-chip energy storages with additional features of flexibility and stretchability. The major category of the energy storages taken into consideration for laser writing belongs to the family of supercapacitors which is known for the high rate of charge transfer, longer life spans and lesser charging times in comparison with traditional batteries. The technology explores the possibilities of non-explosive all solid-state energy storage integration with portable and wearable applications. These features can enable the development of self-powered autonomous devices, vehicles and self-reliant infrastructures. In this chapter, we discuss the progress, challenges and perspectives of micro-supercapacitors fabricated using direct laser writing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超级电容器的直接激光写入
激光直接书写是一种单步加工技术,可用于亚衍射极限以下的微纳米结构。近年来,该技术被用于制造具有柔性和可拉伸性的片上储能。激光写入所考虑的能量存储的主要类别属于超级电容器家族,与传统电池相比,超级电容器以高电荷转移率,更长的寿命和更短的充电时间而闻名。该技术探索了非爆炸性全固态储能与便携式和可穿戴应用集成的可能性。这些特性有助于开发自供电的自动设备、车辆和自力更生的基础设施。在这一章中,我们讨论了用激光直接写入技术制造微型超级电容器的进展、挑战和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward High-Voltage/Energy Symmetric Supercapacitors via Interface Engineering Enhancing Pseudocapacitive Process for Energy Storage Devices: Analyzing the Charge Transport Using Electro-kinetic Study and Numerical Modeling Classical Density Functional Theory Insights for Supercapacitors Ionic Liquid for High Voltage Supercapacitor Supercapacitor-Based Hybrid Energy Harvesting for Low-Voltage System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1