Supervised learning for adaptive interactive multiple model (SLAIMM) tracking

Erik Blasch
{"title":"Supervised learning for adaptive interactive multiple model (SLAIMM) tracking","authors":"Erik Blasch","doi":"10.1109/NAECON.2009.5426622","DOIUrl":null,"url":null,"abstract":"To improve target tracking algorithms, supervised learning of adaptive interacting multiple model (SLAIMM) is compared to other interacting multiple model (IMM) methods. Based on the classical IMM tracking, a trained adaptive acceleration model is added to the filter bank to track behavior between the fixed model dynamics. The results show that the SLAIMM algorithm 1) improves kinematic track accuracy for a target undergoing acceleration, 2) affords track maintenance through maneuvers, and 3) reduces computational costs by performing off-line learning of system parameters. The SLAIMM method is compared with the classical IMM, the Munir Adaptive IMM, and the Maybeck Moving-Bank multiple-model adaptive estimator (MBMMAE).","PeriodicalId":305765,"journal":{"name":"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2009.5426622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To improve target tracking algorithms, supervised learning of adaptive interacting multiple model (SLAIMM) is compared to other interacting multiple model (IMM) methods. Based on the classical IMM tracking, a trained adaptive acceleration model is added to the filter bank to track behavior between the fixed model dynamics. The results show that the SLAIMM algorithm 1) improves kinematic track accuracy for a target undergoing acceleration, 2) affords track maintenance through maneuvers, and 3) reduces computational costs by performing off-line learning of system parameters. The SLAIMM method is compared with the classical IMM, the Munir Adaptive IMM, and the Maybeck Moving-Bank multiple-model adaptive estimator (MBMMAE).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应交互式多模型(SLAIMM)跟踪的监督学习
为了改进目标跟踪算法,将自适应交互多模型(SLAIMM)的监督学习方法与其他交互多模型(IMM)方法进行了比较。在经典IMM跟踪的基础上,在滤波器组中加入训练好的自适应加速度模型来跟踪固定模型动态之间的行为。结果表明,SLAIMM算法1)提高了加速目标的运动轨迹精度,2)通过机动实现轨迹维护,3)通过离线学习系统参数降低了计算成本。将SLAIMM方法与经典IMM、Munir自适应IMM和Maybeck Moving-Bank多模型自适应估计(MBMMAE)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sub-mm wave imaging techniques for non-destructive aerospace materials evaluation Antenna placement for sensing buried objects by radio frequency lateral waves A flexible evaluation framework for collaborative layered sensing systems Modeling and design optimization of planar power transformer for aerospace application JPEG2000 code-stream interpreter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1