CS-Based Secured Big Data Processing on FPGA

A. Kulkarni, A. Jafari, Colin Shea, T. Mohsenin
{"title":"CS-Based Secured Big Data Processing on FPGA","authors":"A. Kulkarni, A. Jafari, Colin Shea, T. Mohsenin","doi":"10.1109/FCCM.2016.59","DOIUrl":null,"url":null,"abstract":"The four V's in Big data sets, Volume, Velocity, Variety, and Veracity, provides challenges in many different aspects of real-time systems. Out of these areas securing big data sets, reduction in processing time and communication bandwidth are of utmost importance. In this paper we adopt Compressive Sensing (CS) based framework to address all three issues. We implement compressive Sensing using Deterministic Random Matrix (DRM) on Artix-7 FPGA, and CS reconstruction using Orthogonal Matching Pursuit (OMP) algorithm on Virtex-7 FPGA. The results show that our implementations for CS sampling and reconstruction are 183x and 2.7x respectively faster when compared to previously published work. We also perform case study of two different applications i.e. multi-channel Seizure Detection and Image processing to demonstrate the efficiency of our proposed CS-based framework. CS-based framework allows us to reduce communication transfers up to 75% while achieving satisfactory range of quality. The results show that our proposed framework is 290x faster and has 7.9x less resource utilization as compared to previously published AES based encryption.","PeriodicalId":113498,"journal":{"name":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2016.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The four V's in Big data sets, Volume, Velocity, Variety, and Veracity, provides challenges in many different aspects of real-time systems. Out of these areas securing big data sets, reduction in processing time and communication bandwidth are of utmost importance. In this paper we adopt Compressive Sensing (CS) based framework to address all three issues. We implement compressive Sensing using Deterministic Random Matrix (DRM) on Artix-7 FPGA, and CS reconstruction using Orthogonal Matching Pursuit (OMP) algorithm on Virtex-7 FPGA. The results show that our implementations for CS sampling and reconstruction are 183x and 2.7x respectively faster when compared to previously published work. We also perform case study of two different applications i.e. multi-channel Seizure Detection and Image processing to demonstrate the efficiency of our proposed CS-based framework. CS-based framework allows us to reduce communication transfers up to 75% while achieving satisfactory range of quality. The results show that our proposed framework is 290x faster and has 7.9x less resource utilization as compared to previously published AES based encryption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于css的FPGA安全大数据处理
大数据集的四个V:体积(Volume)、速度(Velocity)、多样性(Variety)和准确性(Veracity),给实时系统的许多不同方面带来了挑战。在这些保护大数据集的领域中,减少处理时间和通信带宽是至关重要的。在本文中,我们采用基于压缩感知(CS)的框架来解决这三个问题。我们在Artix-7 FPGA上使用确定性随机矩阵(Deterministic Random Matrix, DRM)实现压缩感知,在Virtex-7 FPGA上使用正交匹配追踪(Orthogonal Matching Pursuit, OMP)算法实现CS重构。结果表明,我们对CS采样和重建的实现分别比以前发表的工作快了183倍和2.7倍。我们还对两种不同的应用进行了案例研究,即多通道癫痫检测和图像处理,以证明我们提出的基于cs的框架的效率。基于cs的框架使我们能够在达到令人满意的质量范围的同时减少高达75%的通信传输。结果表明,与之前发布的基于AES的加密相比,我们提出的框架速度快290倍,资源利用率低7.9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatial Predicates Evaluation in the Geohash Domain Using Reconfigurable Hardware Two-Hit Filter Synthesis for Genomic Database Search Initiation Interval Aware Resource Sharing for FPGA DSP Blocks Finding Space-Time Stream Permutations for Minimum Memory and Latency Runtime Parameterizable Regular Expression Operators for Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1