Neural-network performance assessment in sonar applications

J. Solinsky, E.A. Nash
{"title":"Neural-network performance assessment in sonar applications","authors":"J. Solinsky, E.A. Nash","doi":"10.1109/ICNN.1991.163321","DOIUrl":null,"url":null,"abstract":"The authors focus on passive sonar applications which involve analyzing data with unknown signals. A general set of signal events (which are classified by a human aural analysis) are used for network training. The primary objective of the application is to discriminate between target and nontarget event categories. A ground truth (GT) and classical decision theory are used in assessing various neural-network (NN) classifiers operating on the DARPA Phase 1 data set. Changes in classifier operating point are shown to vary results between classifier type. These results show the importance of identifying the objective of the NN application before performance assessment is made.<<ETX>>","PeriodicalId":296300,"journal":{"name":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1991.163321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The authors focus on passive sonar applications which involve analyzing data with unknown signals. A general set of signal events (which are classified by a human aural analysis) are used for network training. The primary objective of the application is to discriminate between target and nontarget event categories. A ground truth (GT) and classical decision theory are used in assessing various neural-network (NN) classifiers operating on the DARPA Phase 1 data set. Changes in classifier operating point are shown to vary results between classifier type. These results show the importance of identifying the objective of the NN application before performance assessment is made.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声纳应用中的神经网络性能评估
作者着重介绍了被动声呐在分析未知信号数据方面的应用。一组通用的信号事件(通过人类听觉分析进行分类)用于网络训练。应用程序的主要目标是区分目标和非目标事件类别。基础真值(GT)和经典决策理论被用于评估在DARPA第一阶段数据集上运行的各种神经网络(NN)分类器。不同类型的分类器操作点的变化会导致不同的结果。这些结果表明,在进行性能评估之前,识别神经网络应用目标的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of neural network and conventional techniques for sonar signal discrimination The potential of a neural network based sonar system in classifying fish Neural network for underwater target detection Design of an intelligent control system for remotely operated vehicles All neural network sonar discrimination system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1