Globalized Robust Optimization for Nonlinear Uncertain Inequalities

A. Ben-Tal, R. Brekelmans, D. Hertog, J. Vial
{"title":"Globalized Robust Optimization for Nonlinear Uncertain Inequalities","authors":"A. Ben-Tal, R. Brekelmans, D. Hertog, J. Vial","doi":"10.2139/ssrn.2618429","DOIUrl":null,"url":null,"abstract":"Robust optimization is a methodology that can be applied to problems that are affected by uncertainty in the problem’s parameters. The classical robust counterpart (RC) of the problem requires the solution to be feasible for all uncertain parameter values in a so-called uncertainty set, and offers no guarantees for parameter values outside this uncertainty set. The globalized robust counterpart (GRC) extends this idea by allowing controlled constraint violations in a larger uncertainty set. The constraint violations are controlled by the distance of the parameter to the original uncertainty set. We derive tractable GRCs that extend the initial GRCs in the literature: our GRC is applicable to nonlinear constraints instead of only linear or conic constraints, and the GRC is more flexible with respect to both the uncertainty set and distance measure function, which are used to control the constraint violations. In addition, we present a GRC approach that can be used to provide an extended trade-off overview between the objective value and several robustness measures.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2618429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Robust optimization is a methodology that can be applied to problems that are affected by uncertainty in the problem’s parameters. The classical robust counterpart (RC) of the problem requires the solution to be feasible for all uncertain parameter values in a so-called uncertainty set, and offers no guarantees for parameter values outside this uncertainty set. The globalized robust counterpart (GRC) extends this idea by allowing controlled constraint violations in a larger uncertainty set. The constraint violations are controlled by the distance of the parameter to the original uncertainty set. We derive tractable GRCs that extend the initial GRCs in the literature: our GRC is applicable to nonlinear constraints instead of only linear or conic constraints, and the GRC is more flexible with respect to both the uncertainty set and distance measure function, which are used to control the constraint violations. In addition, we present a GRC approach that can be used to provide an extended trade-off overview between the objective value and several robustness measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性不确定不等式的全局鲁棒优化
鲁棒优化是一种可以应用于受问题参数不确定性影响的问题的方法。该问题的经典鲁棒对应物(RC)要求解对于所谓的不确定性集中的所有不确定参数值都是可行的,而对该不确定性集中以外的参数值不提供保证。全球化鲁棒对应物(GRC)通过允许在更大的不确定性集中控制约束违反来扩展这一思想。约束违反由参数到原始不确定性集的距离来控制。我们推导了可处理的GRC,扩展了文献中的初始GRC:我们的GRC适用于非线性约束,而不仅仅是线性或二次约束,并且GRC在不确定性集和距离测量函数方面都更加灵活,用于控制约束违反。此外,我们提出了一种GRC方法,可用于在目标值和几个鲁棒性度量之间提供扩展的权衡概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Inference for Moment Condition Models without Rational Expectations Augmented cointegrating linear models with possibly strongly correlated stationary and nonstationary regressors regressors Structured Additive Regression and Tree Boosting Large-Scale Precision Matrix Estimation With SQUIC Error Correction Models and Regressions for Non-Cointegrated Variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1