Deep Learning-Based Polar Code Design

Moustafa Ebada, Sebastian Cammerer, Ahmed Elkelesh, S. Brink
{"title":"Deep Learning-Based Polar Code Design","authors":"Moustafa Ebada, Sebastian Cammerer, Ahmed Elkelesh, S. Brink","doi":"10.1109/ALLERTON.2019.8919804","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a deep learning-based polar code construction algorithm. The core idea is to represent the information/frozen bit indices of a polar code as a binary vector which can be interpreted as trainable weights of a neural network (NN). For this, we demonstrate how this binary vector can be relaxed to a soft-valued vector, facilitating the learning process through gradient descent and enabling an efficient code construction. We further show how different polar code design constraints (e.g., code rate) can be taken into account by means of careful binary-to-soft and soft-to-binary conversions, along with rate-adjustment after each learning iteration. Besides its conceptual simplicity, this approach benefits from having the “decoder-in-the-toop”, i.e., the nature of the decoder is inherently taken into consideration while learning (designing) the polar code. We show results for belief propagation (BP) decoding over both AWGN and Rayleigh fading channels with considerable performance gains over state-of-the-art construction schemes.","PeriodicalId":120479,"journal":{"name":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2019.8919804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this work, we introduce a deep learning-based polar code construction algorithm. The core idea is to represent the information/frozen bit indices of a polar code as a binary vector which can be interpreted as trainable weights of a neural network (NN). For this, we demonstrate how this binary vector can be relaxed to a soft-valued vector, facilitating the learning process through gradient descent and enabling an efficient code construction. We further show how different polar code design constraints (e.g., code rate) can be taken into account by means of careful binary-to-soft and soft-to-binary conversions, along with rate-adjustment after each learning iteration. Besides its conceptual simplicity, this approach benefits from having the “decoder-in-the-toop”, i.e., the nature of the decoder is inherently taken into consideration while learning (designing) the polar code. We show results for belief propagation (BP) decoding over both AWGN and Rayleigh fading channels with considerable performance gains over state-of-the-art construction schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的极坐标代码设计
在这项工作中,我们介绍了一种基于深度学习的极性代码构建算法。其核心思想是将极码的信息/冻结位索引表示为二进制向量,该向量可以解释为神经网络(NN)的可训练权值。为此,我们演示了如何将这个二进制向量放宽为软值向量,通过梯度下降促进学习过程,并实现有效的代码构建。我们进一步展示了如何通过仔细的二进制到软转换和软到二进制转换以及每次学习迭代后的速率调整来考虑不同的极性代码设计约束(例如,码率)。除了其概念上的简单性之外,这种方法还受益于“顶部的解码器”,即在学习(设计)极坐标码时固有地考虑了解码器的性质。我们展示了在AWGN和瑞利衰落信道上的信念传播(BP)解码结果,与最先进的构建方案相比,具有相当大的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Sequential Gradient-Based Multiple Access for Distributed Learning over Fading Channels Scheduling Policies for Minimizing Job Migration and Server Running Costs for Cloud Computing Platforms Explicit Low-complexity Codes for Multiple Access Channel Resolvability Byzantine Fault-Tolerant Parallelized Stochastic Gradient Descent for Linear Regression Deep Reinforcement Learning Based Power Control for Wireless Multicast Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1