An Application of the BP Neural Network to Carbonate Karst Reservoirs Prediction

Yixin Yu, Jinchuan Zhang, Zhijun Jin
{"title":"An Application of the BP Neural Network to Carbonate Karst Reservoirs Prediction","authors":"Yixin Yu, Jinchuan Zhang, Zhijun Jin","doi":"10.1109/ISCID.2011.135","DOIUrl":null,"url":null,"abstract":"Effective porosity is one of the most important parameters in reservoir predication, especially in the carbonate karst reservoirs. In contrast to the calculated results by conventional statistical models, the BP neural network model can predict the porosity of reservoir more accurately because of its high nonlinear mapping ability and very strong abilities of self-adaptation and self-study. In this article, the author unified the different sampling interval of seismic and well logging responses by the mathematical method. Then discussed the correlation of them by the multiple linear regression. On that basis, the authors established the BP neural network model to predict the effective porosity of the reservoirs. The results shows that the porosity and the developed zone of fracture can be predicted in combination of three attributes of seismic and well logging data, moreover, the result is comparatively consistent well with the actually measured porosity and the well performance in study area.","PeriodicalId":224504,"journal":{"name":"2011 Fourth International Symposium on Computational Intelligence and Design","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2011.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effective porosity is one of the most important parameters in reservoir predication, especially in the carbonate karst reservoirs. In contrast to the calculated results by conventional statistical models, the BP neural network model can predict the porosity of reservoir more accurately because of its high nonlinear mapping ability and very strong abilities of self-adaptation and self-study. In this article, the author unified the different sampling interval of seismic and well logging responses by the mathematical method. Then discussed the correlation of them by the multiple linear regression. On that basis, the authors established the BP neural network model to predict the effective porosity of the reservoirs. The results shows that the porosity and the developed zone of fracture can be predicted in combination of three attributes of seismic and well logging data, moreover, the result is comparatively consistent well with the actually measured porosity and the well performance in study area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BP神经网络在碳酸盐岩岩溶储层预测中的应用
有效孔隙度是储层预测,特别是碳酸盐岩岩溶储层预测的重要参数之一。与传统统计模型的计算结果相比,BP神经网络模型具有较高的非线性映射能力和很强的自适应、自学习能力,能够更准确地预测储层孔隙度。本文用数学方法统一了地震响应和测井响应的不同采样间隔。然后用多元线性回归分析了两者的相关性。在此基础上,建立BP神经网络模型预测储层有效孔隙度。结果表明,结合地震和测井资料的三种属性,可以预测储层孔隙度和裂缝发育区,且预测结果与研究区实测孔隙度和井况较为吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Public Electromagnetic Radiation Environment Comparison between China and Germany A Linear Camera Self-calibration Approach from Four Points Applications of Bayesian Network in Fault Diagnosis of Braking Deviation System Agent-Based Modelling and Simulation System for Mass Violence Event Intuitionistic Fuzzy Sets with Single Parameter and its Application to Pattern Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1