Towards Autonomic Science Infrastructure: Architecture, Limitations, and Open Issues

R. Kettimuthu, Zhengchun Liu, Ian T Foster, P. Beckman, A. Sim, Kesheng Wu, W. Liao, Qiao Kang, Ankit Agrawal, A. Choudhary
{"title":"Towards Autonomic Science Infrastructure: Architecture, Limitations, and Open Issues","authors":"R. Kettimuthu, Zhengchun Liu, Ian T Foster, P. Beckman, A. Sim, Kesheng Wu, W. Liao, Qiao Kang, Ankit Agrawal, A. Choudhary","doi":"10.1145/3217197.3217205","DOIUrl":null,"url":null,"abstract":"Scientific computing systems are becoming increasingly complex and indeed are close to reaching a critical limit in manageability when using current human-in-the-loop techniques. In order to address this problem, autonomic, goal-driven management actions based on machine learning must be applied end to end across the scientific computing landscape. Even though researchers proposed architectures and design choices for autonomic computing systems more than a decade ago, practical realization of such systems has been limited, especially in scientific computing environments. Growing interest and recent developments in machine learning have spurred proposals to apply machine learning for goal-based optimization of computing systems in an autonomous fashion. We review recent work that uses machine learning algorithms to improve computer system performance, identify gaps and open issues. We propose a hierarchical architecture that builds on the earlier proposals for autonomic computing systems to realize an autonomous science infrastructure.","PeriodicalId":118966,"journal":{"name":"Proceedings of the 1st International Workshop on Autonomous Infrastructure for Science","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Workshop on Autonomous Infrastructure for Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3217197.3217205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Scientific computing systems are becoming increasingly complex and indeed are close to reaching a critical limit in manageability when using current human-in-the-loop techniques. In order to address this problem, autonomic, goal-driven management actions based on machine learning must be applied end to end across the scientific computing landscape. Even though researchers proposed architectures and design choices for autonomic computing systems more than a decade ago, practical realization of such systems has been limited, especially in scientific computing environments. Growing interest and recent developments in machine learning have spurred proposals to apply machine learning for goal-based optimization of computing systems in an autonomous fashion. We review recent work that uses machine learning algorithms to improve computer system performance, identify gaps and open issues. We propose a hierarchical architecture that builds on the earlier proposals for autonomic computing systems to realize an autonomous science infrastructure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
走向自主科学基础设施:架构、限制和开放问题
科学计算系统正变得越来越复杂,当使用当前的人在循环技术时,在可管理性方面确实接近临界极限。为了解决这个问题,基于机器学习的自主、目标驱动的管理行为必须在整个科学计算领域端到端应用。尽管研究人员在十多年前就提出了自主计算系统的架构和设计选择,但这种系统的实际实现仍然有限,特别是在科学计算环境中。对机器学习日益增长的兴趣和最近的发展促使人们提出将机器学习应用于以自主方式进行基于目标的计算系统优化的建议。我们回顾了最近使用机器学习算法来提高计算机系统性能,识别差距和开放问题的工作。我们提出了一种分层架构,该架构建立在早期自主计算系统的基础上,以实现自主的科学基础设施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Operando Tracking and Prediction of Transition in Material System using LSTM Identifying Anomalous File Transfer Events in LCLS Workflow Virtual Environment for Testing Software-Defined Networking Solutions for Scientific Workflows A Model Driven Intelligent Orchestration Approach to Service Automation in Large Distributed Infrastructures High-Throughput Neuroanatomy and Trigger-Action Programming: A Case Study in Research Automation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1