3D point cloud matching based on principal component analysis and iterative closest point algorithm

Chi Yuan, Xiaoqing Yu, Ziyue Luo
{"title":"3D point cloud matching based on principal component analysis and iterative closest point algorithm","authors":"Chi Yuan, Xiaoqing Yu, Ziyue Luo","doi":"10.1109/ICALIP.2016.7846655","DOIUrl":null,"url":null,"abstract":"Point cloud matching is one of the key technologies of optical three-dimensional contour measurement. Most of the point cloud matching without landmark used the iterative closest point algorithm. In order to improve the performance of the iterative closest point algorithm, the two-step iterative closest point algorithm was proposed. The improved algorithm is divided into a rough matching step and accurate matching step. Rough matching used the principal component analysis algorithm, while the fine matching used the improved iterative closest point algorithm. Compared with the classic iterative closest point algorithm, the improved algorithm can match the partial coincident point cloud. At the same time, the experiment can validate the effectiveness of the proposed algorithm.","PeriodicalId":184170,"journal":{"name":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALIP.2016.7846655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Point cloud matching is one of the key technologies of optical three-dimensional contour measurement. Most of the point cloud matching without landmark used the iterative closest point algorithm. In order to improve the performance of the iterative closest point algorithm, the two-step iterative closest point algorithm was proposed. The improved algorithm is divided into a rough matching step and accurate matching step. Rough matching used the principal component analysis algorithm, while the fine matching used the improved iterative closest point algorithm. Compared with the classic iterative closest point algorithm, the improved algorithm can match the partial coincident point cloud. At the same time, the experiment can validate the effectiveness of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主成分分析和迭代最近点算法的三维点云匹配
点云匹配是光学三维轮廓测量的关键技术之一。无地标点云匹配多采用迭代最近点算法。为了提高迭代最近点算法的性能,提出了两步迭代最近点算法。改进后的算法分为粗匹配步骤和精确匹配步骤。粗匹配采用主成分分析算法,精匹配采用改进迭代最近邻算法。与经典迭代最近点算法相比,改进算法能够匹配部分重合点云。同时,通过实验验证了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of student activities trajectory and design of attendance management based on internet of things An RFID indoor positioning system by using Particle Swarm Optimization-based Artificial Neural Network Comparison of sparse-view CT image reconstruction algorithms Face recognition based on LBPH and regression of Local Binary features Research and application of dynamic and interactive data visualization based on D3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1