Lorenzo Camponovo, O. Scaillet, O. Scaillet, F. Trojani, Fabio Trojani
{"title":"Predictive Regression and Robust Hypothesis Testing: Predictability Hidden by Anomalous Observations","authors":"Lorenzo Camponovo, O. Scaillet, O. Scaillet, F. Trojani, Fabio Trojani","doi":"10.2139/ssrn.2080766","DOIUrl":null,"url":null,"abstract":"Testing procedures for predictive regressions with lagged autoregressive variables imply a suboptimal inference in presence of small violations of ideal assumptions. We propose a novel testing framework resistant to such violations, which is consistent with nearly integrated regressors and applicable to multi-predictor settings, when the data may only approximately follow a predictive regression model. The Monte Carlo evidence demonstrates large improvements of our approach, while the empirical analysis produces a strong robust evidence of market return predictability, using predictive variables such as the dividend yield, the volatility risk premium or labor income.","PeriodicalId":425229,"journal":{"name":"ERN: Hypothesis Testing (Topic)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Hypothesis Testing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2080766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Testing procedures for predictive regressions with lagged autoregressive variables imply a suboptimal inference in presence of small violations of ideal assumptions. We propose a novel testing framework resistant to such violations, which is consistent with nearly integrated regressors and applicable to multi-predictor settings, when the data may only approximately follow a predictive regression model. The Monte Carlo evidence demonstrates large improvements of our approach, while the empirical analysis produces a strong robust evidence of market return predictability, using predictive variables such as the dividend yield, the volatility risk premium or labor income.