Capsule Network with Shortcut Routing

Thanh-Vu Dang, Hoang-Trong Vo, Gwanghyun Yu, Jin Young Kim
{"title":"Capsule Network with Shortcut Routing","authors":"Thanh-Vu Dang, Hoang-Trong Vo, Gwanghyun Yu, Jin Young Kim","doi":"10.1587/transfun.2020EAP1101","DOIUrl":null,"url":null,"abstract":"This study introduces\"shortcut routing,\"a novel routing mechanism in capsule networks that addresses computational inefficiencies by directly activating global capsules from local capsules, eliminating intermediate layers. An attention-based approach with fuzzy coefficients is also explored for improved efficiency. Experimental results on Mnist, smallnorb, and affNist datasets show comparable classification performance, achieving accuracies of 99.52%, 93.91%, and 89.02% respectively. The proposed fuzzy-based and attention-based routing methods significantly reduce the number of calculations by 1.42 and 2.5 times compared to EM routing, highlighting their computational advantages in capsule networks. These findings contribute to the advancement of efficient and accurate hierarchical pattern representation models.","PeriodicalId":348826,"journal":{"name":"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.","volume":"53 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transfun.2020EAP1101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study introduces"shortcut routing,"a novel routing mechanism in capsule networks that addresses computational inefficiencies by directly activating global capsules from local capsules, eliminating intermediate layers. An attention-based approach with fuzzy coefficients is also explored for improved efficiency. Experimental results on Mnist, smallnorb, and affNist datasets show comparable classification performance, achieving accuracies of 99.52%, 93.91%, and 89.02% respectively. The proposed fuzzy-based and attention-based routing methods significantly reduce the number of calculations by 1.42 and 2.5 times compared to EM routing, highlighting their computational advantages in capsule networks. These findings contribute to the advancement of efficient and accurate hierarchical pattern representation models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有快捷路由的胶囊网络
本研究引入了“快捷路由”,这是胶囊网络中的一种新型路由机制,通过直接从本地胶囊激活全局胶囊来解决计算效率低下的问题,消除了中间层。为了提高效率,还探索了一种基于注意力的模糊系数方法。在Mnist、smallnorb和affNist数据集上的实验结果显示,分类性能相当,准确率分别达到99.52%、93.91%和89.02%。所提出的基于模糊和基于注意力的路由方法与EM路由相比,计算次数分别减少了1.42和2.5倍,突出了它们在胶囊网络中的计算优势。这些发现有助于提高高效、准确的层次模式表示模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum: Concatenated Permutation Codes under Chebyshev Distance [IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Vol. E106.A (2023), No. 3 pp.616-632] Automorphism Shuffles for Graphs and Hypergraphs and Its Applications Erratum: A Compact Digital Signature Scheme Based on the Module-LWR Problem [IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Vol. E104.A (2021), No. 9 pp.1219-1234] Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov Random Fields Ramsey Numbers of Trails
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1