Bayesian quantized network coding via generalized approximate message passing

M. Nabaee, F. Labeau
{"title":"Bayesian quantized network coding via generalized approximate message passing","authors":"M. Nabaee, F. Labeau","doi":"10.1109/WTS.2014.6834995","DOIUrl":null,"url":null,"abstract":"In this paper, we study message passing-based decoding of real network coded packets. We explain our developments on the idea of using real field network codes for distributed compression of inter-node correlated messages. Then, we discuss the use of iterative message passing-based decoding for the described network coding scenario, as the main contribution of this paper. Motivated by Bayesian compressed sensing, we discuss the possibility of approximate decoding, even with fewer received measurements (packets) than the number of messages. As a result, our real field network coding scenario, called quantized network coding, is capable of inter-node compression without the need to know the inter-node redundancy of messages. We also present our numerical and analytic arguments on the robustness and computational simplicity (relative to the previously proposed linear programming and standard belief propagation) of our proposed decoding algorithm for the quantized network coding.","PeriodicalId":199195,"journal":{"name":"2014 Wireless Telecommunications Symposium","volume":"167 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Wireless Telecommunications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WTS.2014.6834995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we study message passing-based decoding of real network coded packets. We explain our developments on the idea of using real field network codes for distributed compression of inter-node correlated messages. Then, we discuss the use of iterative message passing-based decoding for the described network coding scenario, as the main contribution of this paper. Motivated by Bayesian compressed sensing, we discuss the possibility of approximate decoding, even with fewer received measurements (packets) than the number of messages. As a result, our real field network coding scenario, called quantized network coding, is capable of inter-node compression without the need to know the inter-node redundancy of messages. We also present our numerical and analytic arguments on the robustness and computational simplicity (relative to the previously proposed linear programming and standard belief propagation) of our proposed decoding algorithm for the quantized network coding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于广义近似消息传递的贝叶斯量化网络编码
本文研究了基于消息传递的真实网络编码数据包解码。我们解释了我们在使用真实的现场网络代码对节点间相关消息进行分布式压缩的想法方面的进展。然后,我们讨论了在所描述的网络编码场景中使用基于迭代消息传递的解码,这是本文的主要贡献。在贝叶斯压缩感知的激励下,我们讨论了近似解码的可能性,即使接收到的测量值(数据包)少于消息的数量。因此,我们的实际现场网络编码场景,称为量化网络编码,能够在不需要知道消息的节点间冗余的情况下进行节点间压缩。我们还对我们提出的量化网络编码解码算法的鲁棒性和计算简单性(相对于先前提出的线性规划和标准信念传播)进行了数值和分析论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spectral re-harvesting for 4G networks: Through low-complexity VAMOS receiver design UE power saving with RRC semi-connected state in LTE Successive precoding and user selection in MU-MIMO broadcast channel with limited feedback Cognitive RAdio sensing based on joint distribution of pseudo WIShart matrix Eigenvalues Mitigating black hole attacks in wireless sensor networks using node-resident expert systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1