Evaluation of an OPENMP Parallelization of Lucas-Kanade on a NUMA-Manycore

Olfa Haggui, C. Tadonki, F. Sayadi, B. Ouni
{"title":"Evaluation of an OPENMP Parallelization of Lucas-Kanade on a NUMA-Manycore","authors":"Olfa Haggui, C. Tadonki, F. Sayadi, B. Ouni","doi":"10.1109/CAHPC.2018.8645936","DOIUrl":null,"url":null,"abstract":"Lucas-Kanade algorithm is a well-known optical flow estimator widely used in image processing for motion detection and object tracking. As a typical image processing algorithm, the procedure is a series of convolution masks followed by 2×2 linear systems for the optical flow vectors. Since we are dealing with a stencil computation for each stage of the algorithm, the overhead from memory accesses is expected to stand as a serious scalability bottleneck, especially on a NUMA manycore configuration. The objective of this study is therefore to investigate an openMP parallelization of Lucas-kanade algorithm on a NUMA manycore, including the performance impact of NUMA-aware settings at runtime. Experimental results on a dual-socket INTEL Broadwell-EIEP is provided together with the corresponding technical discussions.","PeriodicalId":307747,"journal":{"name":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2018.8645936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lucas-Kanade algorithm is a well-known optical flow estimator widely used in image processing for motion detection and object tracking. As a typical image processing algorithm, the procedure is a series of convolution masks followed by 2×2 linear systems for the optical flow vectors. Since we are dealing with a stencil computation for each stage of the algorithm, the overhead from memory accesses is expected to stand as a serious scalability bottleneck, especially on a NUMA manycore configuration. The objective of this study is therefore to investigate an openMP parallelization of Lucas-kanade algorithm on a NUMA manycore, including the performance impact of NUMA-aware settings at runtime. Experimental results on a dual-socket INTEL Broadwell-EIEP is provided together with the corresponding technical discussions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
numa -多核上Lucas-Kanade的OPENMP并行化评价
Lucas-Kanade算法是一种著名的光流估计算法,广泛应用于运动检测和目标跟踪等图像处理领域。作为一种典型的图像处理算法,该程序是一系列卷积掩模,然后是2×2线性系统的光流矢量。由于我们在算法的每个阶段都要处理一个模板计算,因此内存访问的开销预计会成为严重的可伸缩性瓶颈,特别是在NUMA多核配置上。因此,本研究的目的是研究Lucas-kanade算法在NUMA多核上的openMP并行化,包括NUMA感知设置在运行时的性能影响。给出了在INTEL Broadwell-EIEP双插槽上的实验结果,并进行了相应的技术讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Time Predictability Features of ARM Big. LITTLE Multicores Impacts of Three Soft-Fault Models on Hybrid Parallel Asynchronous Iterative Methods Predicting the Performance Impact of Increasing Memory Bandwidth for Scientific Workflows From Java to FPGA: An Experience with the Intel HARP System Copyright
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1