Human Action Recognition on Raw Depth Maps

Jacek Trelinski, B. Kwolek
{"title":"Human Action Recognition on Raw Depth Maps","authors":"Jacek Trelinski, B. Kwolek","doi":"10.1109/VCIP53242.2021.9675349","DOIUrl":null,"url":null,"abstract":"We propose an effective framework for human action recognition on raw depth maps. We leverage a convolutional autoencoder to extract on sequences of deep maps the frame-features that are then fed to a 1D-CNN responsible for embedding action features. A Siamese neural network trained on repre-sentative single depth map for each sequence extracts features, which are then processed by shapelets algorithm to extract action features. These features are then concatenated with features extracted by a BiLSTM with TimeDistributed wrapper. Given the learned individual models on such features we perform a selection of a subset of models. We demonstrate experimentally that on SYSU 3DHOI dataset the proposed algorithm outperforms considerably all recent algorithms including skeleton-based ones.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose an effective framework for human action recognition on raw depth maps. We leverage a convolutional autoencoder to extract on sequences of deep maps the frame-features that are then fed to a 1D-CNN responsible for embedding action features. A Siamese neural network trained on repre-sentative single depth map for each sequence extracts features, which are then processed by shapelets algorithm to extract action features. These features are then concatenated with features extracted by a BiLSTM with TimeDistributed wrapper. Given the learned individual models on such features we perform a selection of a subset of models. We demonstrate experimentally that on SYSU 3DHOI dataset the proposed algorithm outperforms considerably all recent algorithms including skeleton-based ones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于原始深度图的人类动作识别
我们提出了一个有效的基于原始深度图的人体动作识别框架。我们利用卷积自编码器在深度映射序列上提取帧特征,然后将其馈送到负责嵌入动作特征的1D-CNN。Siamese神经网络对每个序列的代表性单深度图进行训练,提取特征,然后通过shapelets算法对特征进行处理,提取动作特征。然后将这些特征与使用timedidistributed包装器的BiLSTM提取的特征连接起来。给定在这些特征上学习到的单个模型,我们执行模型子集的选择。实验证明,在SYSU 3DHOI数据集上,本文提出的算法大大优于所有最近的算法,包括基于骨架的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Seq-Masks: Bridging the gap between appearance and gait modeling for video-based person re-identification Deep Metric Learning for Human Action Recognition with SlowFast Networks LRS-Net: invisible QR Code embedding, detection, and restoration Deep Color Constancy Using Spatio-Temporal Correlation of High-Speed Video Large-Scale Crowdsourcing Subjective Quality Evaluation of Learning-Based Image Coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1