Enhancing Sentiment Analysis with Word2Vec and LSTM: A Comparative Study

Haodong Tang, Nan Zhang, Xin Yu, Teng Mao, Lidong Wang
{"title":"Enhancing Sentiment Analysis with Word2Vec and LSTM: A Comparative Study","authors":"Haodong Tang, Nan Zhang, Xin Yu, Teng Mao, Lidong Wang","doi":"10.56557/jobari/2023/v29i38342","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is an important natural language processing task that helps people understand the emotional information conveyed in texts. This paper aims to propose a sentiment classification model based on the combination of Word2Vec and LSTM (Long Short Term Memory). This paper will introduce two key technologies, Word2Vec and LSTM, combining them to build an effective sentiment analysis model. We conducted a comparative analysis between our model and other state-of-the-art methods including CNN, BiLSTM+CNN, Word2vec+SVM, among others. Through rigorous experimental evaluation, this paper showcases the effectiveness and superior performance of the proposed model in sentiment classification tasks. Our method attains an F1 score of 78.2% on benchmark dataset, indicating its strong performance in the task.","PeriodicalId":119621,"journal":{"name":"Journal of Basic and Applied Research International","volume":"9 23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic and Applied Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/jobari/2023/v29i38342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sentiment analysis is an important natural language processing task that helps people understand the emotional information conveyed in texts. This paper aims to propose a sentiment classification model based on the combination of Word2Vec and LSTM (Long Short Term Memory). This paper will introduce two key technologies, Word2Vec and LSTM, combining them to build an effective sentiment analysis model. We conducted a comparative analysis between our model and other state-of-the-art methods including CNN, BiLSTM+CNN, Word2vec+SVM, among others. Through rigorous experimental evaluation, this paper showcases the effectiveness and superior performance of the proposed model in sentiment classification tasks. Our method attains an F1 score of 78.2% on benchmark dataset, indicating its strong performance in the task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用Word2Vec和LSTM增强情感分析的比较研究
情感分析是一项重要的自然语言处理任务,它可以帮助人们理解文本中所传递的情感信息。本文旨在提出一种基于Word2Vec和LSTM(长短期记忆)相结合的情感分类模型。本文将引入Word2Vec和LSTM两项关键技术,结合它们构建一个有效的情感分析模型。我们将我们的模型与CNN、BiLSTM+CNN、Word2vec+SVM等其他最先进的方法进行了比较分析。通过严格的实验评估,本文展示了该模型在情感分类任务中的有效性和优越的性能。我们的方法在基准数据集上获得了78.2%的F1分数,表明它在任务中的表现很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building an Automatic Controlled Smart Feral Cat Shelter Using a Microcontroller Arduino Mega Improving Productivity in Automotive Manufacturing: A Combined Approach of Root Cause Analysis and Sem Models Transforming Key Industries in Rivers State: The Impact of Automation and Artificial Intelligence on the Future of Work An Economic Analysis of Marketing Efficiency of Maize in Tamil Nadu, India Research on Complex Optimization Models and Efficient Algorithms for Medications Supply Chain during Major Epidemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1