{"title":"Investigation of soil processes on radar signature of landmines","authors":"D. Abrams, N. Lamie, G. Koh","doi":"10.1117/12.777829","DOIUrl":null,"url":null,"abstract":"Soil properties have a significant impact in the observed responses of various sensors for mine detection. Ground penetrating radar (GPR) is an important sensor for mine detection. The performance GPR is largely governed by the soil moisture content. Characterizing the spatial and temporal changes in the dielectric properties of soil surrounding the landmines represents a major challenge for radar evaluation studies. Laboratory and field studies are currently in progress to better document the effect of soil moisture variability on radar sensing of buried landmines. These studies are conducted using commercially available GPRs operating at 400 MHz and 1.5 GHz. The study site is a government mine test facility with various anti-tank (AT) and anti-personnel (AP) mines buried at different depths. The test lanes at this facility are grass-covered and the sub-surface root system plays an important role in modulating the soil properties. Our goal is to investigate the seasonal changes in soil processes at this site and to document how these processes impact the radar signatures of landmines.","PeriodicalId":133868,"journal":{"name":"SPIE Defense + Commercial Sensing","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.777829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Soil properties have a significant impact in the observed responses of various sensors for mine detection. Ground penetrating radar (GPR) is an important sensor for mine detection. The performance GPR is largely governed by the soil moisture content. Characterizing the spatial and temporal changes in the dielectric properties of soil surrounding the landmines represents a major challenge for radar evaluation studies. Laboratory and field studies are currently in progress to better document the effect of soil moisture variability on radar sensing of buried landmines. These studies are conducted using commercially available GPRs operating at 400 MHz and 1.5 GHz. The study site is a government mine test facility with various anti-tank (AT) and anti-personnel (AP) mines buried at different depths. The test lanes at this facility are grass-covered and the sub-surface root system plays an important role in modulating the soil properties. Our goal is to investigate the seasonal changes in soil processes at this site and to document how these processes impact the radar signatures of landmines.