R. D. Labati, V. Piuri, R. Sassi, F. Scotti, Gianluca Sforza
{"title":"Adaptive ECG biometric recognition: a study on re-enrollment methods for QRS signals","authors":"R. D. Labati, V. Piuri, R. Sassi, F. Scotti, Gianluca Sforza","doi":"10.1109/CIBIM.2014.7015440","DOIUrl":null,"url":null,"abstract":"The diffusion of wearable and mobile devices for the acquisition and analysis of cardiac signals drastically increased the possible applicative scenarios of biometric systems based on electrocardiography (ECG). Moreover, such devices allow for comfortable and unconstrained acquisitions of ECG signals for relevant time spans of tens of hours, thus making these physiological signals particularly attractive biometric traits for continuous authentication applications. In this context, recent studies showed that the QRS complex is the most stable component of the ECG signal, but the accuracy of the authentication degrades over time, due to significant variations in the patterns for each individual. Adaptive techniques for automatic template update can therefore become enabling technologies for continuous authentication systems based on ECG characteristics.","PeriodicalId":432938,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2014.7015440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
The diffusion of wearable and mobile devices for the acquisition and analysis of cardiac signals drastically increased the possible applicative scenarios of biometric systems based on electrocardiography (ECG). Moreover, such devices allow for comfortable and unconstrained acquisitions of ECG signals for relevant time spans of tens of hours, thus making these physiological signals particularly attractive biometric traits for continuous authentication applications. In this context, recent studies showed that the QRS complex is the most stable component of the ECG signal, but the accuracy of the authentication degrades over time, due to significant variations in the patterns for each individual. Adaptive techniques for automatic template update can therefore become enabling technologies for continuous authentication systems based on ECG characteristics.