Classification with missing data in a wireless sensor network

Yuan Yuan Li, L. Parker
{"title":"Classification with missing data in a wireless sensor network","authors":"Yuan Yuan Li, L. Parker","doi":"10.1109/SECON.2008.4494352","DOIUrl":null,"url":null,"abstract":"We have developed a novel method to estimate missing observations in wireless sensor networks. We use a hierarchical unsupervised fuzzy ART neural network to represent the data cluster prototypes and describe missing input patterns based on the network. We then estimate missing inputs by a spatial-temporal imputation technique. Our experimental results show that our proposed approach performs better than nine other missing data imputation techniques including moving average and Expectation-Maximization (EM) imputation.","PeriodicalId":188817,"journal":{"name":"IEEE SoutheastCon 2008","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE SoutheastCon 2008","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2008.4494352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We have developed a novel method to estimate missing observations in wireless sensor networks. We use a hierarchical unsupervised fuzzy ART neural network to represent the data cluster prototypes and describe missing input patterns based on the network. We then estimate missing inputs by a spatial-temporal imputation technique. Our experimental results show that our proposed approach performs better than nine other missing data imputation techniques including moving average and Expectation-Maximization (EM) imputation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线传感器网络中缺失数据的分类
我们开发了一种估计无线传感器网络中缺失观测值的新方法。我们使用分层无监督模糊ART神经网络来表示数据簇原型,并基于该网络描述缺失的输入模式。然后,我们通过时空插值技术估计缺失的输入。实验结果表明,本文提出的方法比移动平均和期望最大化(EM)插值等其他九种缺失数据插值方法表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Web-based interactive Student Advising system using Java frameworks Development of a nanoscale directionally sensitive optical radiation sensor for guidance and control of nanorobotic space exploration systems -the VCELL SVM for automatic rodent sleep-wake classification Low-frequency amplifiers for PVDF film sensors Dynamics and simulation of a space robot in a gravitational field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1