{"title":"Comparison of dynamic load modeling using neural network and traditional method","authors":"He Ren-mu, A. Germond","doi":"10.1109/ANN.1993.264338","DOIUrl":null,"url":null,"abstract":"The representation of load dynamic characteristics remains an area of great uncertainty and it becomes a limiting factor of power systems dynamic performance analysis. A major difficulty, both for component-based and measurement-based methods, is the lack of data for dynamic load modeling. A way of solving this problem for measurement-based methods is to interpolate and extrapolate the models identified from wide voltage variation data recorded during naturally-occurring disturbances or field experiments. This paper deals with data measured in Chinese power systems using two models: a multilayer feedforward neural network (ANN) with backpropagation learning, and difference equations (DE) with recursive extended least square identification. A comparison between the two approaches was done. The results show that the DE models interpolation and extrapolation are nearly linear, and they cannot describe the voltage-power nonlinear relationship of load dynamic characteristics. However, the ANN models can represent well this nonlinear relationship, they are promising dynamic load models.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
The representation of load dynamic characteristics remains an area of great uncertainty and it becomes a limiting factor of power systems dynamic performance analysis. A major difficulty, both for component-based and measurement-based methods, is the lack of data for dynamic load modeling. A way of solving this problem for measurement-based methods is to interpolate and extrapolate the models identified from wide voltage variation data recorded during naturally-occurring disturbances or field experiments. This paper deals with data measured in Chinese power systems using two models: a multilayer feedforward neural network (ANN) with backpropagation learning, and difference equations (DE) with recursive extended least square identification. A comparison between the two approaches was done. The results show that the DE models interpolation and extrapolation are nearly linear, and they cannot describe the voltage-power nonlinear relationship of load dynamic characteristics. However, the ANN models can represent well this nonlinear relationship, they are promising dynamic load models.<>