Regression based bandwidth selection for segmentation using Parzen windows

Maneesh Kumar Singh, N. Ahuja
{"title":"Regression based bandwidth selection for segmentation using Parzen windows","authors":"Maneesh Kumar Singh, N. Ahuja","doi":"10.1109/ICCV.2003.1238307","DOIUrl":null,"url":null,"abstract":"We consider the problem of segmentation of images that can be modelled as piecewise continuous signals having unknown, nonstationary statistics. We propose a solution to this problem which first uses a regression framework to estimate the image PDF, and then mean-shift to find the modes of this PDF. The segmentation follows from mode identification wherein pixel clusters or image segments are identified with unique modes of the multimodal PDF. Each pixel is mapped to a mode using a convergent, iterative process. The effectiveness of the approach depends upon the accuracy of the (implicit) estimate of the underlying multimodal density function and thus on the bandwidth parameters used for its estimate using Parzen windows. Automatic selection of bandwidth parameters is a desired feature of the algorithm. We show that the proposed regression-based model admits a realistic framework to automatically choose bandwidth parameters which minimizes a global error criterion. We validate the theory presented with results on real images.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

We consider the problem of segmentation of images that can be modelled as piecewise continuous signals having unknown, nonstationary statistics. We propose a solution to this problem which first uses a regression framework to estimate the image PDF, and then mean-shift to find the modes of this PDF. The segmentation follows from mode identification wherein pixel clusters or image segments are identified with unique modes of the multimodal PDF. Each pixel is mapped to a mode using a convergent, iterative process. The effectiveness of the approach depends upon the accuracy of the (implicit) estimate of the underlying multimodal density function and thus on the bandwidth parameters used for its estimate using Parzen windows. Automatic selection of bandwidth parameters is a desired feature of the algorithm. We show that the proposed regression-based model admits a realistic framework to automatically choose bandwidth parameters which minimizes a global error criterion. We validate the theory presented with results on real images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于回归的带宽选择分割使用Parzen窗口
我们考虑图像的分割问题,这些图像可以建模为具有未知,非平稳统计量的分段连续信号。我们提出了一种解决方案,首先使用回归框架估计图像的PDF,然后mean-shift找到该PDF的模式。分割遵循模式识别,其中像素簇或图像段用多模态PDF的唯一模式识别。每个像素被映射到一个模式使用收敛,迭代过程。该方法的有效性取决于底层多模态密度函数(隐式)估计的准确性,因此取决于使用Parzen窗口进行估计的带宽参数。带宽参数的自动选择是该算法的一个理想特性。我们的研究表明,基于回归的模型提供了一个现实的框架来自动选择带宽参数,使全局误差准则最小化。我们用实际图像验证了所提出的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of static and dynamic body biometrics for gait recognition Selection of scale-invariant parts for object class recognition Information theoretic focal length selection for real-time active 3D object tracking A multi-scale generative model for animate shapes and parts Integrated edge and junction detection with the boundary tensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1