Energy Consumption Uncertainty Model For Battery-Electric Buses in Transit

Hatem Abdelaty, M. Mohamed
{"title":"Energy Consumption Uncertainty Model For Battery-Electric Buses in Transit","authors":"Hatem Abdelaty, M. Mohamed","doi":"10.1109/ITEC51675.2021.9490103","DOIUrl":null,"url":null,"abstract":"This study develops a Deep Learning Neural Network (DLNN) model to predict the consumed energy (EC) of Battery Electric Buses (BEBs) based on bus, route, driver aggressiveness, and environmental parameters. An ADVISOR simulation tool is utilized to estimate EC for 10,800 operation scenarios resulted from a fractional-factorial design. The scenarios are used in a DLNN model with a goodness-of-fit of 0.993. The results show that road gradient sharply increases the EC, while driver aggressiveness parameters considerably affect the EC. The outcomes provide a substantial indication for the operation of BEBs transit networks concerning the consumed energy.","PeriodicalId":339989,"journal":{"name":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC51675.2021.9490103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This study develops a Deep Learning Neural Network (DLNN) model to predict the consumed energy (EC) of Battery Electric Buses (BEBs) based on bus, route, driver aggressiveness, and environmental parameters. An ADVISOR simulation tool is utilized to estimate EC for 10,800 operation scenarios resulted from a fractional-factorial design. The scenarios are used in a DLNN model with a goodness-of-fit of 0.993. The results show that road gradient sharply increases the EC, while driver aggressiveness parameters considerably affect the EC. The outcomes provide a substantial indication for the operation of BEBs transit networks concerning the consumed energy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纯电动公交车在运能量消耗不确定性模型
本研究开发了一个深度学习神经网络(DLNN)模型,基于公交车、路线、驾驶员侵略性和环境参数来预测纯电动公交车(beb)的消耗能量(EC)。使用ADVISOR模拟工具来估计由分数析因设计产生的10,800个操作场景的EC。这些情景用于拟合优度为0.993的DLNN模型。结果表明,路面坡度会显著提高车辆的燃油经济性,而驾驶员侵略性参数对燃油经济性影响较大。研究结果为城域网的运行提供了重要的参考依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deadzone Compensated Double Integral Sliding Mode Control for Distributed Converters An Improved Feedforward Controller for Minimizing the DC-link Capacitance in a Brushless Synchronous Generator based Aircraft DC Power System SOC Estimation Error Analysis for Li Ion Batteries Effects Of Battery Pack Capacity On Fuel Economy Of Hybrid Electric Vehicles Crash safety of a power electronic unit of an electrified vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1