Weighted Adaptive Lifting-Basedwavelet Transform

Yu Liu, K. Ngan
{"title":"Weighted Adaptive Lifting-Basedwavelet Transform","authors":"Yu Liu, K. Ngan","doi":"10.1109/ICIP.2007.4379278","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new weighted adaptive lifting (WAL)-based wavelet transform that is designed to solve the problems existing in the previous adaptive directional lifting (ADL) approach. The proposed approach uses the weighted function to make sure that the prediction and update stages are consistent, the directional interpolation to improve the orientation property of interpolated image, and adaptive interpolation filter to adjust to statistical property of each image. Experimental results show that the proposed WAL-based wavelet transform for image coding outperforms the conventional lifting-based wavelet transform up to 3.02 dB in PSNR and significant improvement in subjective quality is also observed. Compared with the ADL approach, up to 1.18 dB improvement in PSNR is reported.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we propose a new weighted adaptive lifting (WAL)-based wavelet transform that is designed to solve the problems existing in the previous adaptive directional lifting (ADL) approach. The proposed approach uses the weighted function to make sure that the prediction and update stages are consistent, the directional interpolation to improve the orientation property of interpolated image, and adaptive interpolation filter to adjust to statistical property of each image. Experimental results show that the proposed WAL-based wavelet transform for image coding outperforms the conventional lifting-based wavelet transform up to 3.02 dB in PSNR and significant improvement in subjective quality is also observed. Compared with the ADL approach, up to 1.18 dB improvement in PSNR is reported.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加权自适应提升的小波变换
针对自适应定向提升(ADL)方法存在的问题,提出了一种新的加权自适应提升(WAL)小波变换。该方法利用加权函数保证预测和更新阶段的一致性,利用定向插值提高插值图像的方向性,利用自适应插值滤波器根据图像的统计特性进行调整。实验结果表明,基于小波变换的图像编码比传统的提升小波变换的PSNR提高了3.02 dB,主观质量也有了明显改善。与ADL方法相比,PSNR提高了1.18 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Block-Based Gradient Domain High Dynamic Range Compression Design for Real-Time Applications Generation of Layered Depth Images from Multi-View Video Detection Strategies for Image Cube Trajectory Analysis An Efficient Compression Algorithm for Hyperspectral Images Based on Correlation Coefficients Adaptive Three Dimensional Wavelet Zerotree Coding Enabling Introduction of Stereoscopic (3D) Video: Formats and Compression Standards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1