Multi-Metric Evaluation of Thermal-to-Visual Face Recognition

K. Lai, S. Yanushkevich
{"title":"Multi-Metric Evaluation of Thermal-to-Visual Face Recognition","authors":"K. Lai, S. Yanushkevich","doi":"10.1109/EST.2019.8806202","DOIUrl":null,"url":null,"abstract":"In this paper, we aim to address the problem of heterogeneous or cross-spectral face recognition using machine learning to synthesize visual spectrum face from infrared images. The synthesis of visual-band face images allows for more optimal extraction of facial features to be used for face identification and/or verification. We explore the ability to use Generative Adversarial Networks (GANs) for face image synthesis, and examine the performance of these images using pre-trained Convolutional Neural Networks (CNNs). The features extracted using CNNs are applied in face identification and verification. We explore the performance in terms of acceptance rate when using various similarity measures for face verification.","PeriodicalId":102238,"journal":{"name":"2019 Eighth International Conference on Emerging Security Technologies (EST)","volume":"52 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Eighth International Conference on Emerging Security Technologies (EST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EST.2019.8806202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we aim to address the problem of heterogeneous or cross-spectral face recognition using machine learning to synthesize visual spectrum face from infrared images. The synthesis of visual-band face images allows for more optimal extraction of facial features to be used for face identification and/or verification. We explore the ability to use Generative Adversarial Networks (GANs) for face image synthesis, and examine the performance of these images using pre-trained Convolutional Neural Networks (CNNs). The features extracted using CNNs are applied in face identification and verification. We explore the performance in terms of acceptance rate when using various similarity measures for face verification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热视觉人脸识别的多度量评价
在本文中,我们旨在利用机器学习从红外图像合成视觉光谱人脸来解决异构或跨光谱人脸识别问题。视觉波段面部图像的合成允许更优化的面部特征提取,用于面部识别和/或验证。我们探索了使用生成对抗网络(GANs)进行人脸图像合成的能力,并使用预训练的卷积神经网络(cnn)检查这些图像的性能。将cnn提取的特征应用于人脸识别与验证。我们在使用各种相似度量进行人脸验证时,从接受率方面探讨了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gaze-based Presentation Attack Detection for Users Wearing Tinted Glasses Usability of Skin Texture Biometrics for Mixed-Resolution Images Spreading Code Identification of Legal Drones in IoT Environment Real Time Object Detection, Tracking, and Distance and Motion Estimation based on Deep Learning: Application to Smart Mobility Alphanumeric Glyphs Transformation Based on Shape Morphing: Context of Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1