Redesigning of JPEG statistical model in the lossy mode fitting distribution of DCT coefficients

Y. Kuroki, Yoshifumi Ueshige, T. Ohta
{"title":"Redesigning of JPEG statistical model in the lossy mode fitting distribution of DCT coefficients","authors":"Y. Kuroki, Yoshifumi Ueshige, T. Ohta","doi":"10.1109/ICIP.2000.899583","DOIUrl":null,"url":null,"abstract":"The JPEG statistical models in the lossy mode specify the procedures for converting the discrete cosine transform (DCT) coefficients into binary strings and context modeling in the case where the binary arithmetic coder called the QM-coder is employed as an entropy coder. The JPEG lossy mode establishes two statistical models, one for prediction residuals of the DC coefficients and the other for the AC coefficients. We redesign these two models by taking account of their distribution. We confirm that the Laplacian distribution is appropriate for both the DC coefficients and the AC coefficients through the Kolmogorov-Smirnov (KS) test; consequently, we propose statistical models that fit the Laplacian distribution. By adopting the proposed statistical models in lieu of the conventional models, the number of the states decreases from 294 to 210 and the compression performance on several test images including super high definition images improves by 0.01 to 1.48%.","PeriodicalId":193198,"journal":{"name":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2000.899583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The JPEG statistical models in the lossy mode specify the procedures for converting the discrete cosine transform (DCT) coefficients into binary strings and context modeling in the case where the binary arithmetic coder called the QM-coder is employed as an entropy coder. The JPEG lossy mode establishes two statistical models, one for prediction residuals of the DC coefficients and the other for the AC coefficients. We redesign these two models by taking account of their distribution. We confirm that the Laplacian distribution is appropriate for both the DC coefficients and the AC coefficients through the Kolmogorov-Smirnov (KS) test; consequently, we propose statistical models that fit the Laplacian distribution. By adopting the proposed statistical models in lieu of the conventional models, the number of the states decreases from 294 to 210 and the compression performance on several test images including super high definition images improves by 0.01 to 1.48%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有损模式拟合DCT系数分布中JPEG统计模型的重新设计
有损模式下的JPEG统计模型指定了将离散余弦变换(DCT)系数转换为二进制字符串的过程,以及在使用称为qm编码器的二进制算术编码器作为熵编码器的情况下进行上下文建模的过程。JPEG有损模式建立了两个统计模型,一个用于预测直流系数的残差,另一个用于预测交流系数的残差。考虑到它们的分布,我们重新设计了这两个模型。通过Kolmogorov-Smirnov (KS)检验,我们证实了直流系数和交流系数的拉普拉斯分布都是合适的;因此,我们提出了适合拉普拉斯分布的统计模型。采用本文提出的统计模型代替传统模型后,状态数从294个减少到210个,对包括超高清图像在内的多个测试图像的压缩性能提高了0.01 ~ 1.48%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust shape tracking in the presence of cluttered background Symmetric region growing Joint halftoning and watermarking A deformable template model based on fuzzy alignment algorithm Region-based scanning for image compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1