Iris feature extraction using gabor filter

Saad Minhas, M. Javed
{"title":"Iris feature extraction using gabor filter","authors":"Saad Minhas, M. Javed","doi":"10.1109/ICET.2009.5353166","DOIUrl":null,"url":null,"abstract":"Biometric technology uses human characteristics for their reliable identification. Iris recognition is a biometric technology that utilizes iris for human identification. The human iris contains very discriminating features and hence provides the accurate authentication of persons. To extract the discriminating iris features, different methods have been used in the past. In this work, gabor filter is applied on iris images in two different ways. Firstly, it is applied on the entire image at once and unique features are extracted from the image. Secondly, it is used to capture local information from the image, which is then combined to create global features. A comparison of results is presented using different number of filter banks containing 15, 20, 25, 30 and 35 filters. A number of experiments are performed using CASIA version 1 iris database. By comparing the output feature vectors using hamming distance, it is found that the best accuracy of 99.16% is achieved after capturing the local information from the iris images.","PeriodicalId":307661,"journal":{"name":"2009 International Conference on Emerging Technologies","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2009.5353166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Biometric technology uses human characteristics for their reliable identification. Iris recognition is a biometric technology that utilizes iris for human identification. The human iris contains very discriminating features and hence provides the accurate authentication of persons. To extract the discriminating iris features, different methods have been used in the past. In this work, gabor filter is applied on iris images in two different ways. Firstly, it is applied on the entire image at once and unique features are extracted from the image. Secondly, it is used to capture local information from the image, which is then combined to create global features. A comparison of results is presented using different number of filter banks containing 15, 20, 25, 30 and 35 filters. A number of experiments are performed using CASIA version 1 iris database. By comparing the output feature vectors using hamming distance, it is found that the best accuracy of 99.16% is achieved after capturing the local information from the iris images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于gabor滤波的虹膜特征提取
生物识别技术利用人类的特征进行可靠的识别。虹膜识别是一种利用虹膜进行人体识别的生物识别技术。人的虹膜包含非常有区别的特征,因此提供了准确的身份验证。为了提取鉴别虹膜特征,过去使用了不同的方法。在这项工作中,gabor滤波器以两种不同的方式应用于虹膜图像。首先,将其应用于整幅图像,从图像中提取出独特的特征;其次,它用于从图像中捕获局部信息,然后将其组合成全局特征。使用不同数量的滤波器组(包括15、20、25、30和35个滤波器)对结果进行了比较。利用CASIA version 1鸢尾花数据库进行了大量实验。通过对比使用汉明距离的输出特征向量,发现从虹膜图像中提取局部信息后,准确率达到了99.16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis and verification of Two-Phase Commit & Three-Phase Commit Protocols New innovations in healthcare delivery and laparoscopic surgery in Pakistan An invisible dual watermarking scheme for authentication and copyrights protection Efficient metadata loading algorithm for generation and parsing of health level 7 version 3 messages A Self Organizing Map based Urdu Nasakh character recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1