Improvement of CuBr laser coherence properties

D. Astadjov, L. Stoychev, N. Sabotinov
{"title":"Improvement of CuBr laser coherence properties","authors":"D. Astadjov, L. Stoychev, N. Sabotinov","doi":"10.1117/12.677296","DOIUrl":null,"url":null,"abstract":"Great improvement of CuBr laser beam spatial coherence was made by a special design of the laser resonator, the generalized diffraction filtered resonator. Utilizing it diffraction-limited beam divergence can be easily obtained throughout the laser pulse. Since the spatial coherence is in inverse relation with the beam divergence, decreasing the latter we increase the former. The temporal evolution of beam divergence for the more intense green (λ=510nm) laser line was measured within laser pulse of MO (master oscillator) CuBr laser system fitted with a stable plane-plane resonator (PPR), a confocal unstable resonator of positive branch (PBUR) and a generalized diffraction filtered resonator (GDFR). With the MOPA (master oscillator power amplifier) system only GDFR was used. The estimations were verified by direct coherence measurements by means of a reversal shear interferometer that was a modified Michelson interferometer. The estimations as well as the direct measurement of spatial coherence show that coherence degree increases from PPR through PBUR to GDFR. Moreover, with GDFR it is time-independent. With MOPA system the coherence degree goes up further. So the degree of coherence measured interferometrically with MO is: for PPR - 0.16, for PBUR - 0.28 and for GDFR - 0.36. For MOPA the measured degree of coherence reaches 0.65. The estimated and the measured coherence trends show similarity. Based on the Michelson interferometer and having just four optical components (a spherical lens, an optical wedge and two plane mirrors), a new rigid instrument for spatial coherence analysis of optical beams was introduced as well.","PeriodicalId":266048,"journal":{"name":"International Conference on Holography, Optical Recording, and Processing of Information","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Holography, Optical Recording, and Processing of Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.677296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Great improvement of CuBr laser beam spatial coherence was made by a special design of the laser resonator, the generalized diffraction filtered resonator. Utilizing it diffraction-limited beam divergence can be easily obtained throughout the laser pulse. Since the spatial coherence is in inverse relation with the beam divergence, decreasing the latter we increase the former. The temporal evolution of beam divergence for the more intense green (λ=510nm) laser line was measured within laser pulse of MO (master oscillator) CuBr laser system fitted with a stable plane-plane resonator (PPR), a confocal unstable resonator of positive branch (PBUR) and a generalized diffraction filtered resonator (GDFR). With the MOPA (master oscillator power amplifier) system only GDFR was used. The estimations were verified by direct coherence measurements by means of a reversal shear interferometer that was a modified Michelson interferometer. The estimations as well as the direct measurement of spatial coherence show that coherence degree increases from PPR through PBUR to GDFR. Moreover, with GDFR it is time-independent. With MOPA system the coherence degree goes up further. So the degree of coherence measured interferometrically with MO is: for PPR - 0.16, for PBUR - 0.28 and for GDFR - 0.36. For MOPA the measured degree of coherence reaches 0.65. The estimated and the measured coherence trends show similarity. Based on the Michelson interferometer and having just four optical components (a spherical lens, an optical wedge and two plane mirrors), a new rigid instrument for spatial coherence analysis of optical beams was introduced as well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
cur激光相干特性的改进
通过对激光谐振腔的特殊设计,即广义衍射滤波谐振腔,大大提高了激光光束的空间相干性。利用它可以很容易地在整个激光脉冲中获得衍射限制光束发散。由于空间相干性与光束散度成反比关系,减小散度可以增大空间相干性。采用稳定平面-平面谐振腔(PPR)、共焦不稳定正支谐振腔(PBUR)和广义衍射滤波谐振腔(GDFR)组成的MO(主振荡器)cur激光系统,测量了强绿色(λ=510nm)激光线在激光脉冲中的发散时间演变。对于MOPA(主振荡器功率放大器)系统,只使用GDFR。利用改进型迈克尔逊干涉仪的反向剪切干涉仪进行直接相干测量,验证了上述估计。空间相干性的估计和直接测量表明,从PPR到PBUR到GDFR,相干度增加。此外,GDFR是与时间无关的。在MOPA系统中,相干度进一步提高。因此,MO干涉测量的相干度为:PPR - 0.16, PBUR - 0.28, GDFR - 0.36。测得的MOPA相干度达到0.65。估计的相干趋势与测量的相干趋势相似。在迈克尔逊干涉仪的基础上,仅采用四个光学元件(一个球面透镜、一个光楔和两个平面镜),设计了一种用于光束空间相干分析的刚性仪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D behaviour of photopolymers as holographic recording material Spectral analysis of shrinkage in holographic materials suitable for optical storage applications Analysis of amplitude and phase coupling in volume holography Replay at optical communications wavelengths of holographic gratings recorded in the visible The holographic recording in photopolymer by excitation forbidden singlet-triplet transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1