A novel particle swarm tracking system based on chromatic co-occurrence matrices

Issam Elafi, M. Jedra, N. Zahid
{"title":"A novel particle swarm tracking system based on chromatic co-occurrence matrices","authors":"Issam Elafi, M. Jedra, N. Zahid","doi":"10.1109/ISACV.2018.8354035","DOIUrl":null,"url":null,"abstract":"Moving object tracking in video sequences becomes an active research field due to its application in various domains. This work proposes a PSO algorithm based on new chromatic co-occurrence matrices descriptor in order to track objects under a dynamic environment. The use of the co-occurrence matrices will give us the capability to exploit the information about the texture of the target objects. The qualitative and quantitative studies on newest benchmark demonstrate that the obtained results are very competitive in comparison with many recent state-of-the-art methods.","PeriodicalId":184662,"journal":{"name":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2018.8354035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Moving object tracking in video sequences becomes an active research field due to its application in various domains. This work proposes a PSO algorithm based on new chromatic co-occurrence matrices descriptor in order to track objects under a dynamic environment. The use of the co-occurrence matrices will give us the capability to exploit the information about the texture of the target objects. The qualitative and quantitative studies on newest benchmark demonstrate that the obtained results are very competitive in comparison with many recent state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于色共现矩阵的粒子群跟踪系统
视频序列中的运动目标跟踪由于其在各个领域的应用而成为一个活跃的研究领域。本文提出了一种基于新的色共现矩阵描述符的粒子群算法,用于动态环境下的目标跟踪。共现矩阵的使用将使我们能够利用有关目标物体纹理的信息。对最新基准的定性和定量研究表明,所获得的结果与目前许多最先进的方法相比具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Policy based generic autonomic adapter for a context-aware social-collaborative system Dual-camera 3D head tracking for clinical infant monitoring Integrating web usage mining for an automatic learner profile detection: A learning styles-based approach Deep generative models: Survey Deep neural network dynamic traffic routing system for vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1