Efficient Dependency Analysis for Rule-Based Ontologies

Larry Gonz'alez, Alexander E. Ivliev, M. Krötzsch, Stephan Mennicke
{"title":"Efficient Dependency Analysis for Rule-Based Ontologies","authors":"Larry Gonz'alez, Alexander E. Ivliev, M. Krötzsch, Stephan Mennicke","doi":"10.48550/arXiv.2207.09669","DOIUrl":null,"url":null,"abstract":". Several types of dependencies have been proposed for the static analysis of existential rule ontologies, promising insights about com-putational properties and possible practical uses of a given set of rules, e.g., in ontology-based query answering. Unfortunately, these dependencies are rarely implemented, so their potential is hardly realised in practice. We focus on two kinds of rule dependencies – positive reliances and restraints – and design and implement optimised algorithms for their efficient computation. Experiments on real-world ontologies of up to more than 100,000 rules show the scalability of our approach, which lets us realise several previously proposed applications as practical case studies. In particular, we can analyse to what extent rule-based bottom-up approaches of reasoning can be guaranteed to yield redundancy-free “lean” knowledge graphs (so-called cores ) on practical ontologies.","PeriodicalId":342971,"journal":{"name":"International Workshop on the Semantic Web","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on the Semantic Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.09669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. Several types of dependencies have been proposed for the static analysis of existential rule ontologies, promising insights about com-putational properties and possible practical uses of a given set of rules, e.g., in ontology-based query answering. Unfortunately, these dependencies are rarely implemented, so their potential is hardly realised in practice. We focus on two kinds of rule dependencies – positive reliances and restraints – and design and implement optimised algorithms for their efficient computation. Experiments on real-world ontologies of up to more than 100,000 rules show the scalability of our approach, which lets us realise several previously proposed applications as practical case studies. In particular, we can analyse to what extent rule-based bottom-up approaches of reasoning can be guaranteed to yield redundancy-free “lean” knowledge graphs (so-called cores ) on practical ontologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于规则本体的高效依赖分析
. 对于存在规则本体的静态分析,已经提出了几种类型的依赖关系,这些依赖关系有望对计算属性和给定规则集的可能实际用途产生见解,例如,在基于本体的查询回答中。不幸的是,这些依赖很少被实现,因此它们的潜力在实践中很难实现。我们关注两种类型的规则依赖-积极依赖和约束-并设计和实现优化算法,使其高效计算。在多达100,000多个规则的现实世界本体上的实验显示了我们方法的可扩展性,这使我们能够实现之前提出的几个应用程序作为实际案例研究。特别是,我们可以分析基于规则的自底向上的推理方法在多大程度上可以保证在实际本体上产生无冗余的“精益”知识图(所谓的核心)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Textual Entailment for Effective Triple Validation in Object Prediction Mapping and Cleaning Open Commonsense Knowledge Bases with Generative Translation H2 TNE: Temporal Heterogeneous Information Network Embedding in Hyperbolic Spaces RMLStreamer-SISO: An RDF Stream Generator from Streaming Heterogeneous Data HCL: Improving Graph Representation with Hierarchical Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1