Adaptive AR Channel Model Identification of Time-Varying Communication Systems

Z. Krusevac, P. Rapajic
{"title":"Adaptive AR Channel Model Identification of Time-Varying Communication Systems","authors":"Z. Krusevac, P. Rapajic","doi":"10.1109/ISSSTA.2008.121","DOIUrl":null,"url":null,"abstract":"This paper implements an adaptive identification of autoregressive AR model coefficients for model-based filtering over time-varying communication channels. The presented approach does not require a-priori knowledge of the dynamics of the system which overcomes the issue of determining model coefficients that capture the dynamics of unknown time-varying channels. Simulation MSE performance analysis in a multiuser environment shows superior experimental performance of the AR(2) model-based adaptive algorithm with adaptive model identification, comparing to the AR(1) model-based adaptive algorithm with adaptive model identification, the same algorithm with fixed model coefficients and standard observation-only-based LMS and RLS adaptive algorithms.","PeriodicalId":334589,"journal":{"name":"2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSSTA.2008.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper implements an adaptive identification of autoregressive AR model coefficients for model-based filtering over time-varying communication channels. The presented approach does not require a-priori knowledge of the dynamics of the system which overcomes the issue of determining model coefficients that capture the dynamics of unknown time-varying channels. Simulation MSE performance analysis in a multiuser environment shows superior experimental performance of the AR(2) model-based adaptive algorithm with adaptive model identification, comparing to the AR(1) model-based adaptive algorithm with adaptive model identification, the same algorithm with fixed model coefficients and standard observation-only-based LMS and RLS adaptive algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时变通信系统自适应AR信道模型辨识
本文实现了一种自回归AR模型系数的自适应辨识方法,用于时变通信信道的基于模型的滤波。所提出的方法不需要先验的系统动力学知识,这克服了确定捕获未知时变通道动态的模型系数的问题。在多用户环境下的仿真MSE性能分析表明,与具有自适应模型识别的AR(1)模型自适应算法、固定模型系数的AR(1)模型自适应算法和标准的仅基于观测的LMS和RLS自适应算法相比,基于AR(2)模型的自适应算法具有更好的实验性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal User Pairing for Multiuser MIMO Periodic Hadamard Phase Precoding for HARQ Systems over Intersymbol Interference Channels Distributed Opportunistic Packet Scheduling Policy in Wireless LANs A Selective Signal Combining Scheme for Noncoherent UWB Systems The F-LDPC Family: High-Performance Flexible Modern Codes for Flexible Radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1