A topographical nonnegative matrix factorization algorithm

Nicoleta Rogovschi, Lazhar Labiod, M. Nadif
{"title":"A topographical nonnegative matrix factorization algorithm","authors":"Nicoleta Rogovschi, Lazhar Labiod, M. Nadif","doi":"10.1109/IJCNN.2013.6706849","DOIUrl":null,"url":null,"abstract":"We explore in this paper a novel topological organization algorithm for data clustering and visualization named TPNMF. It leads to a clustering of the data, as well as the projection of the clusters on a two-dimensional grid while preserving the topological order of the initial data. The proposed algorithm is based on a NMF (Nonnegative Matrix Factorization) formalism using a neighborhood function which take into account the topological order of the data. TPNMF was validated on variant real datasets and the experimental results show a good quality of the topological ordering and homogenous clustering.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We explore in this paper a novel topological organization algorithm for data clustering and visualization named TPNMF. It leads to a clustering of the data, as well as the projection of the clusters on a two-dimensional grid while preserving the topological order of the initial data. The proposed algorithm is based on a NMF (Nonnegative Matrix Factorization) formalism using a neighborhood function which take into account the topological order of the data. TPNMF was validated on variant real datasets and the experimental results show a good quality of the topological ordering and homogenous clustering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种地形非负矩阵分解算法
本文探索了一种新的用于数据聚类和可视化的拓扑组织算法——TPNMF。它导致数据的聚类,以及在保持初始数据的拓扑顺序的同时在二维网格上的聚类投影。该算法基于NMF(非负矩阵分解)形式,使用考虑数据拓扑顺序的邻域函数。在不同的真实数据集上对TPNMF进行了验证,实验结果表明TPNMF具有良好的拓扑排序和同质聚类质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An SVM-based approach for stock market trend prediction Spiking neural networks for financial data prediction Improving multi-label classification performance by label constraints Biologically inspired intensity and range image feature extraction A location-independent direct link neuromorphic interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1