Anomaly-Based Intrusion Detection Systems for Mobile Ad Hoc Networks: A Practical Comprehension

S. Valiveti, Anush Manglani, Tadrush Desai
{"title":"Anomaly-Based Intrusion Detection Systems for Mobile Ad Hoc Networks: A Practical Comprehension","authors":"S. Valiveti, Anush Manglani, Tadrush Desai","doi":"10.4018/IJSSSP.2021070102","DOIUrl":null,"url":null,"abstract":"Ad hoc networks are used in heterogeneous environments like tactical military applications, where no centrally coordinated infrastructure is available. The network is required to perform self-configuration, dynamic topology management, and ensure the self-sustainability of the network. Security is hence of paramount importance. Anomaly-based intrusion detection system (IDS) is a distributed activity carried out by all nodes of the network in a cooperative manner along with other related network activities like routing, etc. Machine learning and its advances have found a promising place in anomaly detection. This paper describes the journey of defining the most suitable routing protocol for implementing IDS for tactical applications, along with the selection of the related suitable data set. The paper also reviews the latest machine learning techniques, implementation capabilities, and limitations.","PeriodicalId":135841,"journal":{"name":"Int. J. Syst. Softw. Secur. Prot.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Syst. Softw. Secur. Prot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSSSP.2021070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Ad hoc networks are used in heterogeneous environments like tactical military applications, where no centrally coordinated infrastructure is available. The network is required to perform self-configuration, dynamic topology management, and ensure the self-sustainability of the network. Security is hence of paramount importance. Anomaly-based intrusion detection system (IDS) is a distributed activity carried out by all nodes of the network in a cooperative manner along with other related network activities like routing, etc. Machine learning and its advances have found a promising place in anomaly detection. This paper describes the journey of defining the most suitable routing protocol for implementing IDS for tactical applications, along with the selection of the related suitable data set. The paper also reviews the latest machine learning techniques, implementation capabilities, and limitations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于异常的移动自组织网络入侵检测系统:一个实用的理解
自组织网络用于异构环境,如战术军事应用,其中没有中央协调的基础设施可用。要求网络具备自配置、动态拓扑管理功能,保证网络的自持续性。因此,安全是最重要的。基于异常的入侵检测系统(IDS)是一种分布式的活动,由网络的所有节点协同路由等相关网络活动共同完成。机器学习及其进步已经在异常检测中找到了一个有前途的地方。本文描述了为战术应用程序实现IDS定义最合适的路由协议的过程,以及相关合适数据集的选择。本文还回顾了最新的机器学习技术、实现能力和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Light Weight Temper Resistance Client File in an External Memory for Remote User Authentication and Access Control Proposed Secure 3-Use Case Diagram A Novel Iterated Function System-Based Model for Coloured Image Encryption Formal Metamodeling for Secure Model-Driven Engineering Cloud Computing Virtual Machine Workload Prediction Method Based on Variational Autoencoder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1