High-Accuracy and Energy-Efficient Acoustic Inference using Hardware-Aware Training and a 0.34nW/Ch Full-Wave Rectifier

Sheng Zhou, Xi Chen, Kwantae Kim, Shih-Chii Liu
{"title":"High-Accuracy and Energy-Efficient Acoustic Inference using Hardware-Aware Training and a 0.34nW/Ch Full-Wave Rectifier","authors":"Sheng Zhou, Xi Chen, Kwantae Kim, Shih-Chii Liu","doi":"10.1109/AICAS57966.2023.10168561","DOIUrl":null,"url":null,"abstract":"A full-wave rectifier (FWR) is a necessary component of many analog acoustic feature extractor (FEx) designs targeted at edge audio applications. However, analog circuits that perform close-to-ideal rectification contribute a significant portion of the total power of the FEx. This work presents an energy-efficient FWR design by using a dynamic comparator and scaling the comparator clock frequency with its input signal bandwidth. Simulated in a 65nm CMOS process, the rectifier circuit consumes 0.34nW per channel for a 0.6V supply. Although the FWR does not perform ideal rectification, an acoustic FEx behavioral model in Python is proposed based on our FWR design, and a neural network trained with the output of the proposed behavioral model recovers high classification accuracy in an audio keyword spotting (KWS) task. The behavioral model also included comparator noise and offset extracted from transistor-level simulation. The whole KWS chain using our behavioral model achieves 89.45% accuracy for 12-class KWS on the Google Speech Commands Dataset.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A full-wave rectifier (FWR) is a necessary component of many analog acoustic feature extractor (FEx) designs targeted at edge audio applications. However, analog circuits that perform close-to-ideal rectification contribute a significant portion of the total power of the FEx. This work presents an energy-efficient FWR design by using a dynamic comparator and scaling the comparator clock frequency with its input signal bandwidth. Simulated in a 65nm CMOS process, the rectifier circuit consumes 0.34nW per channel for a 0.6V supply. Although the FWR does not perform ideal rectification, an acoustic FEx behavioral model in Python is proposed based on our FWR design, and a neural network trained with the output of the proposed behavioral model recovers high classification accuracy in an audio keyword spotting (KWS) task. The behavioral model also included comparator noise and offset extracted from transistor-level simulation. The whole KWS chain using our behavioral model achieves 89.45% accuracy for 12-class KWS on the Google Speech Commands Dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于硬件感知训练和0.34nW/Ch全波整流器的高精度节能声学推断
全波整流器(FWR)是许多针对边缘音频应用的模拟声学特征提取器(FEx)设计的必要组成部分。然而,执行接近理想整流的模拟电路贡献了FEx总功率的很大一部分。这项工作提出了一种节能的FWR设计,通过使用动态比较器并根据其输入信号带宽缩放比较器时钟频率。在65nm CMOS工艺中模拟,整流电路在0.6V电源下每个通道消耗0.34nW。尽管FWR不能进行理想的校正,但基于我们的FWR设计,我们在Python中提出了一个声学FEx行为模型,并且用所提出的行为模型的输出训练的神经网络在音频关键字定位(KWS)任务中恢复了较高的分类精度。行为模型还包括比较器噪声和从晶体管级仿真中提取的偏移量。在Google语音命令数据集上,使用我们的行为模型对12类KWS的整个KWS链达到89.45%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synaptic metaplasticity with multi-level memristive devices Unsupervised Learning of Spike-Timing-Dependent Plasticity Based on a Neuromorphic Implementation A Fully Differential 4-Bit Analog Compute-In-Memory Architecture for Inference Application Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1