{"title":"Simulation Model for Borehole Heat Exchangers","authors":"Petri Hietaharju, T. Boström","doi":"10.3384/ECP18153277","DOIUrl":null,"url":null,"abstract":"Seasonal thermal energy storage (STES) offers a solution to address the mismatch between production and consumption by storing the produced excess heat for later use. Borehole heat exchangers (BHEs) are one of the sensible STES technologies. In this paper, a longterm simulation model for BHEs was developed. A finite line-source model for the heat transfer outside the borehole and a quasi-3D model for the heat transfer inside the borehole were applied in two region simulation approach. Fast Fourier transformation technique together with a cubic spline interpolation method were used for faster simulation time with time varying loads and longer simulation periods. The simulation method was validated using experimental data. Results showed that the simulation model is able to accurately model ground and fluid temperature evolution.","PeriodicalId":350464,"journal":{"name":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3384/ECP18153277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Seasonal thermal energy storage (STES) offers a solution to address the mismatch between production and consumption by storing the produced excess heat for later use. Borehole heat exchangers (BHEs) are one of the sensible STES technologies. In this paper, a longterm simulation model for BHEs was developed. A finite line-source model for the heat transfer outside the borehole and a quasi-3D model for the heat transfer inside the borehole were applied in two region simulation approach. Fast Fourier transformation technique together with a cubic spline interpolation method were used for faster simulation time with time varying loads and longer simulation periods. The simulation method was validated using experimental data. Results showed that the simulation model is able to accurately model ground and fluid temperature evolution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钻孔换热器的仿真模型
季节性热能储存(STES)提供了一种解决方案,通过储存产生的多余热量供以后使用,来解决生产和消费之间的不匹配问题。井内热交换器(BHEs)是一种可行的STES技术。本文建立了BHEs的长期模拟模型。采用有限线源模型模拟井外换热,准三维模型模拟井内换热。采用快速傅立叶变换和三次样条插值相结合的方法,可提高时变载荷下的仿真速度和仿真周期。利用实验数据对仿真方法进行了验证。结果表明,该模拟模型能够较准确地模拟地温和流体温度的演化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental and Computational study of Chemical Looping Combustion Using the concept of data enclosing tunnel as an online feedback tool for simulator training FMI4j: A Software Package for working with Functional Mock-up Units on the Java Virtual Machine Comparison of Linear Controllers for Nonlinear, Open-loop Unstable Reactor A Data-Driven Sensitivity Analysis Approach for Dynamically Positioned Vessels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1