A method for training a feed-forward neural net model while targeting reduced nonlinearity

C. Koutsougeras, G. Papadourakis
{"title":"A method for training a feed-forward neural net model while targeting reduced nonlinearity","authors":"C. Koutsougeras, G. Papadourakis","doi":"10.1109/TAI.1991.167095","DOIUrl":null,"url":null,"abstract":"In the analysis presented for feedforward neural networks, the causes of problems in the adaptation of current models are examined. A new method for training a feedforward neural net model is introduced. The method encompasses elements of both supervised and unsupervised learning. The development of internal representations is no more an issue tangential to the curve fitting objectives of the other known supervised learning methods. Curve fitting remains as a primary objective but unsupervised learning techniques are also used in order to aid the development of internal representations. The net structure is incrementally formed, thus allowing the formation of a structure of reduced nonlinearity.<<ETX>>","PeriodicalId":371778,"journal":{"name":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1991.167095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the analysis presented for feedforward neural networks, the causes of problems in the adaptation of current models are examined. A new method for training a feedforward neural net model is introduced. The method encompasses elements of both supervised and unsupervised learning. The development of internal representations is no more an issue tangential to the curve fitting objectives of the other known supervised learning methods. Curve fitting remains as a primary objective but unsupervised learning techniques are also used in order to aid the development of internal representations. The net structure is incrementally formed, thus allowing the formation of a structure of reduced nonlinearity.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种针对减少非线性的前馈神经网络模型的训练方法
在前馈神经网络的分析中,研究了当前模型自适应中出现问题的原因。介绍了一种训练前馈神经网络模型的新方法。该方法包含有监督学习和无监督学习的元素。内部表征的发展不再是与其他已知的监督学习方法的曲线拟合目标无关的问题。曲线拟合仍然是一个主要目标,但为了帮助内部表示的发展,也使用了无监督学习技术。网状结构是逐渐形成的,因此可以形成一个减少非线性的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AUTOTEC: an English to Chinese machine translation system Backward assembly planning An event-based real-time logic to specify the behavior and timing properties of real-time systems Feature-based design evaluation through constraint structure unification Extending the learnability of decision trees
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1