Intelligent condition diagnosis method for rotating machinery using Relative Ratio Symptom Parameter and Bayesian Network

Jingjing Zhu, Zhongxing Li, Ke Li, Peng Chen
{"title":"Intelligent condition diagnosis method for rotating machinery using Relative Ratio Symptom Parameter and Bayesian Network","authors":"Jingjing Zhu, Zhongxing Li, Ke Li, Peng Chen","doi":"10.1109/ISSSE.2010.5607088","DOIUrl":null,"url":null,"abstract":"In order to effectively identify faults of a rotating mechanics, a new kind of symptom parameter — Relative Ratio Symptom Parameter (RRSP) is proposed in this paper. Moreover, combined with Bayesian Network, the corresponding fault diagnosis system is built. In the paper, the vibration signals are monitored and measured and the relative ratio symptom parameter is calculated, of which the parameters whose identification index is bigger are chosen as the input of Bayesian Network, by observing and analyzing the output that is the probability of normal state and abnormal states, Bayesian Network in the mechanical fault diagnosis is proved to be effective by real date measured in each state of a rotating machine.","PeriodicalId":211786,"journal":{"name":"2010 International Symposium on Signals, Systems and Electronics","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Symposium on Signals, Systems and Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSSE.2010.5607088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to effectively identify faults of a rotating mechanics, a new kind of symptom parameter — Relative Ratio Symptom Parameter (RRSP) is proposed in this paper. Moreover, combined with Bayesian Network, the corresponding fault diagnosis system is built. In the paper, the vibration signals are monitored and measured and the relative ratio symptom parameter is calculated, of which the parameters whose identification index is bigger are chosen as the input of Bayesian Network, by observing and analyzing the output that is the probability of normal state and abnormal states, Bayesian Network in the mechanical fault diagnosis is proved to be effective by real date measured in each state of a rotating machine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相对比症状参数和贝叶斯网络的旋转机械智能状态诊断方法
为了有效地识别旋转机械的故障,本文提出了一种新的症状参数——相对比症状参数(RRSP)。并结合贝叶斯网络建立了相应的故障诊断系统。本文通过对振动信号的监测和测量,计算出识别指标较大的相对比例症状参数作为贝叶斯网络的输入,通过观察和分析输出,即正常状态和异常状态的概率,通过对旋转机械各状态的实测数据,证明了贝叶斯网络在机械故障诊断中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A balanced-fed dual-polarized feed operating at 3-5 GHz for compact ranges A method based on marginal utility theory for EMC- target allocation problem Design of reactive PIC microcontroller Effects of field plate on surface- and substrate-related power slump in GaAs MESFETTS Compact printed ultra-wideband gourd antenna with A band-notched designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1